温度和保温时间对铜/铝薄膜的界面扩散性能及力学性能影响的分子动力学模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular Dynamics Simulation of Effect of Temperature and Holding Time on Interface Diffusion Performance and Mechanical Properties of Copper/Aluminum Film
  • 作者:韩雪杰 ; 郭巧能 ; 杨仕娥 ; 王明星 ; 王杰芳 ; 刘强 ; 王鲁钰 ; 古干 ; 钱相飞
  • 英文作者:HAN Xuejie;GUO Qiaoneng;YANG Shie;WANG Mingxing;WANG Jiefang;LIU Qiang;WANG Luyu;GU Gan;QIAN Xiangfei;School of Physics and Engineering, Zhengzhou University;International College, Zhengzhou University;
  • 关键词: ; ; 薄膜 ; 界面扩散 ; 力学性能
  • 英文关键词:Cu;;Al;;film;;interface diffusion;;mechanical performance
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:郑州大学物理工程学院;郑州大学国际学院;
  • 出版日期:2019-07-04 17:19
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.516
  • 基金:国家自然科学基金项目(11372283);; 河南省教育厅科学技术研究重点项目(13A140674,17A430001)
  • 语种:中文;
  • 页:SJGY201914026
  • 页数:6
  • CN:14
  • ISSN:61-1133/TG
  • 分类号:109-114
摘要
利用分子动力学方法研究保温温度和保温时间对铜/铝薄膜界面扩散及力学性能的影响。结果表明:铜原子扩散到铝侧的数目比铝原子扩散到铜侧的多。铜原子能扩散到铝侧的深处,铝原子只在界面处有扩散。铝的扩散系数大于铜的。铜铝在较低温度下扩散不明显,在800 K下扩散较好。因此确定模拟界面扩散时的保温温度为800 K。随着保温时间的增加,过渡层的厚度先增大后基本保持不变。当在800 K下保温1.2 ns时,铜/铝薄膜的力学性能最佳。
        The effects of holding temperature and holding time on the interface diffusion and mechanical properties of Cu/Al film were investigated by using molecular dynamics simulations. The results indicate that the number of Cu atoms diffusing into Al side is larger than that of Al atoms diffusing into Cu side. Cu atoms diffuse into the depth of Al side, and Al atoms only diffuse in the interface. The diffusion coefficient of Al is larger than that of Cu. The diffusion of Cu and Al is not obvious at lower temperatures and the diffusion is better at 800 K. Therefore, 800 K is identified as the holding temperature of simulated interface diffusion. With the holding time increasing, the thickness of the transion layer increases and then basically remains unchanged. When keeping at 800 K for 1.2 ns, Cu/Al film achieves the best mechanical properties.
引文
[1]Zhou Q,Li S,Huang P,et al.Strengthening mechanism of super-hard nanoscale Cu/Al multilayers with negative enthalpy of mixing[J].APL materials,2016,4(9):96-98.
    [2]Ni Z L,Ye F X.Effect of lap configuration on the microstructure and mechanical properties of dissimilar ultrasonic metal welded copper-aluminum joints[J].Journal of Materials Processing Technology,2017,245:180-192.
    [3]Xu H,Liu C,Silberschmidt V V,et al.Behavior of aluminum oxide,intermetallics and voids in Cu-Al wire bonds[J].Acta Materialia,2011,59(14):5661-5673.
    [4]Saeid T,Abdollah-Zadeh A,Sazgari B.Weldability and mechanical properties of dissimilar aluminum-copper lap joints made by friction stir welding[J].Journal of Alloys Compounds,2010,490(1/2):652-655.
    [5]Liu F,Huang H,Wang Y.Study on microstructure and properties of composite plate of copper and aluminum alloy manufactured by diffusion welding[J].Hot working technology,2011,40(17):149-151.
    [6]Li X,Lu Z Y,Fautrelle Y,et al.Influence of strong magnetic field on interdiffusion behavior between Al and Cu[J].Materials Letters,2013,96(96):104-108.
    [7]Chen S D,Soh A K,Ke F J.Molecular dynamics modeling of diffusion bonding[J].Scripta Materialia,2005,52(11):1135-1140.
    [8]尹海龙,李世春.Al-Cu扩散偶的界面反应[J].热加工工艺,2008,37(24):1-4.
    [9]杨睿,李世春,宋玉强.Al/Cu扩散偶相界面的实验研究[J].中国石油大学学报(自然科学版),2007,31(2):110-113.
    [10]谢军,吴卫东,叶成钢,等.Al/Cu薄膜真空扩散连接技术[J].强激光与粒子束,2004,16(5):607-610.
    [11]李亚江,吴会强,陈茂爱,等.Cu/Al扩散焊工艺及结合界面的组织性能[J].焊接,2001,10(1):7-10.
    [12]Lee K S,Kwon Y N.Solid-state bonding between Al and Cu by vacuum hot pressing[J].The Transactions of Nonferrous Metals Society of China,2013,23(2):341-346.
    [13]张建宇,马强,廉影,等.Cu/Al复合材料退火过程中的界面组织演变[J].金属热处理,2017 42(7):131-136.
    [14]罗龙,王宝峰,李丽荣.铜铝热轧扩散复合界面扩散的分子动力学模拟[J].热处理技术与装备,2011,32(2):55-60.
    [15]Li C,Li D X,Tao X M,et al.Molecular dynamics simulation of diffusion bonding of Al-Cu interface[J].Modelling and Simulation in Materials Science and Engineering,2014,22:065013.
    [16]刘浩,柯孚久,潘辉,等.铜铝扩散焊及拉伸的分子动力学模拟[J].物理学报,2007,56(1):407.
    [17]Chen S D,Ke F,Zhou M,et al.Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al[J].Acta Materialia,2007,55(9):3169-3175.
    [18]王杰芳,张铎,郭巧能,等.Zn对Al-Cu-Mg-Ag合金组织和常温力学性能的影响[J].郑州大学学报(工学版),2017,38(3):6-9.
    [19]Plimpton S.Fast Parallel Algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
    [20]Caj J,Ye Y Y.Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys[J].Physical Review B,1996,54(12):8398.
    [21]张建宇,姚金金,曾祥勇,等.铜包铝复合材料研究进展[J].中国有色金属学报,2014,24(5):1275-1284.
    [22]叶政,羊浩,黄继华,等.保温时间对铝/铜钎焊接头界面化合物和力学性能的影响[J].焊接学报,2016,37(12):9-12.
    [23]王利华,乔刚.退火处理对铜铝复合材料扩散层组织和性能的影响[J].金属热处理,2013,38(12):68-71.
    [24]陈丽,邢丕峰,魏成富,等.铝铜薄膜复合技术的研究现状[J].热加工工艺,2014,43(22):26-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700