活性红M-3BE在多级臭氧气浮工艺中的迁移转化特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transformation of reactive red M-3BE during the treatment process of the dual-step ozone induced flotation
  • 作者:王佳 ; 金鹏康 ; 尉笑 ; 王自元 ; 魏哲超 ; 刘惠岳 ; 金鑫
  • 英文作者:WANG Jia;JIN Pengkang;WEI Xiao;WANG Ziyuan;WEI Zhechao;LIU Huiyue;JIN Xin;School of Environmental and Municipal Engineering, Xi'an University of Architectural and Technology;Zhejiang Fenglin Flax Dyeing and Finishing Co.Ltd.;
  • 关键词:活性红M-3BE ; 印染废水 ; 多级臭氧气浮工艺 ; 有机物的迁移转化特性
  • 英文关键词:reactive red M-3BE;;printing and dyeing wastewater;;dual-step ozone induced flotation process;;transformation characteristics of organic compounds
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:西安建筑科技大学环境与市政工程学院;浙江丰林染整有限公司;
  • 出版日期:2019-01-26
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家科技支撑计划项目(2014BAC13B06)
  • 语种:中文;
  • 页:HJJZ201901006
  • 页数:10
  • CN:01
  • ISSN:11-5591/X
  • 分类号:36-45
摘要
针对传统污泥法对印染废水中有机物去除效果有限的问题,利用多级臭氧气浮中试实验系统(DOIF)对活性红M-3BE印染废水进行深度处理,研究不同操作参数对DOIF工艺处理效果的影响,优化DOIF工艺。为进一步确定印染废水中有机物的迁移转化过程,采用紫外可见分光光度计、三维荧光(3D-EEM)和液相色谱等方法进行了分析。结果表明,臭氧气浮氧化脱色效果良好,臭氧投加量、PAC投加量和回流比分别为21 mg?L~(-1)、9 mg?L~(-1)和40%的情况下,废水脱色率和DOC去除率分别达到99.1%和25.2%。臭氧气浮降解活性红M-3BE的工艺中,臭氧催化氧化过程中的矿化起主要作用。其作用机理推测为,首先活性红M-3BE非对称断键为Ⅰ、Ⅱ和Ⅲ,其次Ⅰ分解为2种中间产物,并随后分解为萘和萘酚,Ⅱ分解为均三嗪,Ⅲ分解为苯环。多级臭氧气浮工艺对活性红M-3BE印染废水去除效果明显,为后续臭氧气浮技术工程化应用提供了参考依据。
        Because of the limited removal efficiency for organic matters in printing and dyeing wastewater bytraditional sludge process, the pilot-scale test system of the dual-step ozone induced flotation(DOIF) wasdeveloped for the advanced treatment of the printing and dyeing wastewater of reactive red M-3BE in this study.The effects of different operation parameters on DOIF treatment efficiency were studied for the optimization of thisprocess. Then UV-vis spectrophotometer, three-dimensional fluorescence(3D-EEM) and liquid chromatographywere used to identify the transformation of organic compounds in printing and dyeing wastewater. The resultsshowed that a good decolorization performance was obtained by ozone flotation oxidization in DOIF process. Atthe ozone dosage of 21 mg?L~(-1), PAC dosage of 9 mg?L~(-1), and 40% reflux ratio, both the decolorization efficiencyof the printing and dyeing wastewater of reactive red M-3BE and removal rate of DOC were 99.1% and 25.2%,respectively. During the degradation processing of reactive red M-3BE by DOIF, the mineralization of ozonecatalytic oxidation process played a major role. The mechanism was speculated that the bonds of reactive red M-3BE were asymmetrically broken as Ⅰ, Ⅱ and Ⅲ. Then Ⅰ was decomposed into two intermediates withnaphthalene and naphthol as the subsequent decomposition products. Ⅱ and Ⅲ were decomposed intomesitylene triazine and benzene ring, respectively. An obvious removal effect of printing and dyeing wastewater ofreactive red M-3BE was proved for DOIF process, which provides a reference for its engineering application.
引文
[1]MCMULLAN G,MEEHAN C,CONNEELY A,et al.Microbialdecolourisation and degradation of textile dyes[J].Applied Microbiology and Biotechnology,2001,56(1/2):81-87.
    [2]杨继.几种活性染料的生物降解特性研究[D].上海:东华大学,2016.
    [3]周红艺,陈勇,梁思,等.海藻酸钠固定化纳米铁还原脱色活性红X-3B[J].中国环境科学,2016,36(12):3576-3582.
    [4]张昊,杨清香,李慧君,等.活性红M-3BE脱色真菌的筛选及脱色性能研究[J].环境工程学报,2007,1(11):55-58.
    [5]杨睿媛,王敏,王文锋,等.活性红m-3BE的辐照降解研究[J].环境科学与技术,2005,28(S1):1-3.
    [6]梁吉艳.活性染料废水电化学脱色性能研究[D].沈阳:东北大学,2009.
    [7]董俊明,陈晓阳.GeO2改性TiO2催化超声降解活性红(M-3BE)染料废水的应用研究[J].环境工程学报,2011,5(10):2293-2297.
    [8]URS V G.Ozonation of drinking water:Part I.Oxidation kinetics and product formation[J].Water Research,2003,37(7):1443-1467.
    [9]董淑福.多相催化臭氧氧化法处理印染废水的研究[J].工业水处理,2013,33(4):58-60.
    [10]李勇.臭氧-活性炭联用处理城市生活污水研究[D].广州:广东工业大学,2005.
    [11]张静,杜亚威,刘晓静,等.臭氧微气泡处理酸性大红3R废水特性研究[J].环境科学,2015,36(2):584-589.
    [12]杜亚威.微气泡臭氧氧化处理酸性大红3R废水特性研究[D].石家庄:河北科技大学,2016.
    [13]JIN P K,WANG X C,HU G.A dispersed-ozone flotation(DOF)separator for tertiary wastewater treatment[J].Water Science&Technology,2006,53(9):151-157.
    [14]JIN P K,JIN X,VIGGO A,et al.A study on the reactivity characteristics of dissolved effluent organic matter(EfOM)from municipal wastewater treatment plant during ozonation[J].Water Research,2016,88:643-652.
    [15]金鹏康,韩冬,金鑫,等.多级臭氧气浮一体化装置对污水厂出水的处理效果[J].中国给水排水,2015,31(15):12-15.
    [16]邱壮,金鹏康,王丹,等.多级臭氧气浮装置深度处理印染生化出水中试研究[J].工业水处理,2017,37(8):53-56.
    [17]邱壮,王锐,金鹏康.臭氧预氧化-混凝深度处理印染二级生化出水[J].印染,2016,42(17):15-19.
    [18]杨睿媛.活性红染料m-3BE的辐照脱色与降解研究[C]//中国化学会,上海交通大学.第二届全国环境化学学术报告会论文集,2004.
    [19]侯瑞,金鑫,金鹏康,等.臭氧-混凝耦合工艺污水深度处理特性及其机制[J].环境科学,2017,38(2):640-646.
    [20]金鑫.臭氧混凝互促增效机制及其在污水深度处理中的应用[D].西安:西安建筑科技大学,2016.
    [21]RECKHOW D A,SINGER P C.The removal of organic halide precursors by preozonation and alum coagulation[J].Journal of the American Water Works Association,1984,76(4):151-157.
    [22]DUAN J M,GREGORY J.Coagulation by hydrolysing metal salts[J].Advances in Colloidand Interface Science,2003,100-102:475-502.
    [23]汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,9(3):1-12.
    [24]栾兆坤,汤鸿霄,于忱非.混凝过程中铝与聚合铝水解形态的动力学转化及其稳定性[J].环境科学学报,1997,17(3):65-71.
    [25]ZHAO H,LIU H,QU J.Aluminum speciation of coagulants with low concentration:Analysis by electrospray ionization mass spectrometry[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2011,379(1):43-50.
    [26]QI F,XU B,CHEN Z,et al.Influence of aluminum oxides surface properties on catalyzed ozonation of 2,4,6-trichloroanisole[J].Separation&Purification Technology,2009,66(2):405-410.
    [27]韩冬.多级臭氧气浮工艺在污水深度处理中的应用研究[D].西安:西安建筑科技大学,2016.
    [28]侯瑞.臭氧-混凝联合处理互促增效机制研究[C]//中国化学会应用化学学科委员会水处理化学理事会.第十三届全国水处理化学大会暨海峡两岸水处理化学研讨会摘要集,2016.
    [29]金鑫,金鹏康,孔茜,等.污水厂二级出水溶解性有机物臭氧化特性研究[J].中国环境科学,2015,35(10):2985-2990.
    [30]胡刚.臭氧-气浮工艺在深度处理中的应用[D].西安:西安建筑科技大学,2005.
    [31]ZHAO L,SUN Z,MA J.Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution[J].Environmental Science&Technology,2009,43(11):4157-4163.
    [32]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2002,24(2):61-65.
    [33]刘建红,王利颖,王保贵,等.臭氧氧化对二级出水有机物(EfOM)特性机制的影响[J].环境工程学报,2016,10(3):1228-1234.
    [34]GONG J,LIU Y,SUN X.O3and UV/O3oxidation of organic constituents of biotreated municipal wastewater[J].Water Research,2008,42(4):1238-1244.
    [35]WU F,TANOUE E,LIU C Q.Fluorescence and amino acid characteristics of molecular size fractions of DOM in the waters of Lake Biwa[J].Biogeochemistry,2003,65(2):245-257.
    [36]侯瑞,金鑫,金鹏康,等.污水厂二级出水中难凝聚有机物的臭氧化特性[J].环境科学,2018,39(2):844-851.
    [37]杨岸明,常江,甘一萍,等.臭氧氧化二级出水有机物可生化性研究[J].环境科学,2010,31(2):363-367.
    [38]宋晓娜,于涛,张远,等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J].环境科学学报,2010,30(11):2321-2331.
    [39]孔赟,朱亮,吕梅乐,等.三维荧光光谱技术在水环境修复和废水处理中的应用[J].生态环境学报,2012,21(9):1647-1654.
    [40]鞠东.活性艳红M-3BE的化学降解与微胶囊化研究[D].太原:山西大学,2010.
    [41]刘海龙,郭雪峰,王敏慧,等.臭氧-混凝交互作用对混凝效果的影响[J].环境科学,2015,36(9):3285-3291.
    [42]韩利华,许红英,陈鹏.活性红3BE及其水解产物的液相色谱分离[J].河北化工,2004(2):31-32.
    [43]SHANTKRITI S,SENTHIL K S.Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems[J].Journal of Water Process Engineering,2018,22:180-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700