H_2O_2对含氮消毒副产物二氯乙腈、二溴乙腈去除及影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Approach to removal of dichloroacetonitrile and dibromoacetonitrile through nitrogen dioxide disinfection by H_2O_2 and its influential factors
  • 作者:员建 ; 许明媚 ; 王浡谕 ; 苑宏英 ; 高富 ; 朱慧玥
  • 英文作者:YUAN Jian;XU Ming-mei;WANG Bo-yu;YUAN Hong-ying;GAO Fu;ZHU Hui-yue;School of Environmental and Municipal Engineering,Tianjin Chengjian University;Tianjin Key Laboratory of Aquatic Science and Technology;
  • 关键词:环境工程学 ; 二氯乙腈 ; 二溴乙腈 ; 过氧化氢 ; 去除率
  • 英文关键词:environmental engineering;;DCAN;;DBAN;;H_2O_2;;removal rate
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:天津城建大学环境与市政工程学院;天津市水质科学与技术重点实验室;
  • 出版日期:2019-04-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:v.19;No.110
  • 基金:国家自然科学基金项目(51308374);; 科技成果转化奖励资助项目(KJZHz-CA-1749)
  • 语种:中文;
  • 页:AQHJ201902043
  • 页数:6
  • CN:02
  • ISSN:11-4537/X
  • 分类号:294-299
摘要
为了解H_2O_2在实际处理饮用水中有机物的效果,研究了过氧化氢(H_2O_2)在常温常压下对氯化消毒副产物二氯乙腈(DCAN)和二溴乙腈(DBAN)去除效果及影响因素的规律,探究了H_2O_2投加量、初始pH值和反应物初始质量浓度对DCAN和DBAN去除效率的影响。结果表明,H_2O_2能较好地氧化降解DCAN和DBAN。当H_2O_2单独去除一种卤乙腈(Haloacetonitriles,HANs)时,加大反应物初始质量浓度促进氧化降解DCAN和DBAN的效果不明显,当反应5 min、反应物初始质量浓度为250μg/L时,DCAN和DBAN的去除率最高;过高或过低的pH值会抑制氧化反应的进行,pH=7. 5时,DCAN和DBAN的去除率达到最大,分别为46. 47%和43. 41%; H_2O_2在一定投加量(15~35 mmol/L)范围内,随H_2O_2浓度增加,DCAN、DBAN的去除率分别呈现先增加后降低和先增加后平缓的趋势,二者的H_2O_2最佳浓度分别为25 mmol/L和30 mmol/L。
        The present paper is inclined to find a proper approach to removing the dichloroacetonitrile( DCAN) and dibromoacetonitrile( DBAN) under the ambient conditions by using the hydrogen peroxide( H_2O_2) so as to provide a theoretical basis of H_2O_2 application. As is well known,H_2O_2 tends to show abetter efficiency on the removal of DCAN and DBAN in comparison with the traditional chlorination. To make the effects of H_2O_2 dosage more remarkable,it would be necessary to investigate and identify the effect of H_2O_2 dosage,the initial pH value and the initial mass concentration effect of the reactant on the removability of DCAN and DBAN. We have found and confirmed that,when H_2O_2 is adopted to remove the haloacetonitrile( HANs)away separately or singly,it won't be absolutely necessary to promote the oxidative degradation of DCAN and DBAN to heighten the effect of the initial mass concentration of the reactant. For example,when the initial mass concentration of the reactant is250 μg/L 5 minutes later,it would be possible for the removing rate of DCAN and DBAN to reach its highest one. What is more,too high or too low pH value may tend to inhibit the oxidation reaction. Moreover,when the pH value turns up to 7. 5,the removal rate of DCAN and DBAN would be ready to reach 46. 47%and 43. 41%,respectively,though higher concentration of H_2O_2 is favorable for the removal of DCAN and DBAN. In addition,it is also possible to accelerate the removal efficiency of the said DCAN and DBAN without any difficulty on the condition when the initial concentration of H_2O_2 can be managed to increase from15 mmol/L to 35 mmol/L. Thus,with the continuous increase of H_2O_2 concentration,their removal rates can reveal a trend or tendency first of increase,and then,decrease,and later,tend to increase first and then get flattened gradually. Besides,the optimalized concentration of H_2O_2 prove to be 25 mmol/L and 30 mmol/L,respectively.
引文
[1] ZHANG Jinsong(张金松),LU Xiaoyan(卢小艳).Drinking water disinfection process and development of by-product control technology[J]. Water Supply and Sewerage(给水排水),2016(9):1-3.
    [2] XU Qian(徐倩),XU Bin(徐斌),QIN Cao(覃操),et al. Study on the potential of chlorination of typical nitrogenous organic compounds in water to produce disinfection by-products[J]. Environmental Science(环境科学),2011,32(7):1967-1973.
    [3] ZHA Xiaosong(查晓松),MA Luming(马鲁铭),LIU Yan(刘燕). Research progress on removal technology of disinfection by-products in drinking water[J]. Southwest Water Supply and Drainage(西南给排水),2014(4):29-34.
    [4] DING H,MENG L,ZHANG H,et al. Occurrence,profiling and prioritization of halogenated disinfection byproducts in drinking water of China[J]. Environmental Science Processes&Impacts,2013,15(7):1424-1429.
    [5] MARK G M,ELIZABETH D W,KRISTIN M,et al.Haloacetonitriles vs. Regulated haloacetic acids:are nitrogen-containing DBPs more toxic[J]. Environmental Science&Technology,2007,41(2):645-651.
    [6] DONG Lei(董蕾),WANG Haiyan(王海燕),CAI Hongquan(蔡宏铨),et al. Investigation on the present situation of nitrogen-containing disinfection by-products in drinking water of six cities in China[J]. Journal of Environment and Health(环境与健康杂志),2016,33(3):232-235.
    [7] GAO Naiyun(高乃云),ZHAO Lu(赵璐),CHU Wenhai(楚文海). Mass concentration distribution of typical nitrogen-containing disinfection by-product haloacetonitrile in drinking water[J]. Journal of Tongji University:Natural Science Edition(同济大学学报:自然科学版),2012,40(2):251-255.
    [8] ROCCARO P,CHANG H S,VAGLIASINDI F G A,et al. Modeling bromide effects on yields and speciation of dihaloacetonitriles formed in chlorinated drinking water[J]. Water Research,2013,47(16):5995-6006.
    [9] DING Chunsheng(丁春生),CHEN Jiadu(陈嘉都),LI Dongbing(李东兵),et al. Formation mechanism of disinfection by-product dibromoacetonitrile in drinking water[J]. Chinese Environmental Science(中国环境科学),2017,37(11):4173-4178.
    [10] ZHU Wenzhu(朱文姝),WANG Qishan(王启山),SUN Xiaoming(孙晓明). H2O2study on the effect of pre-oxidation on the removal of THMFP by coagulation/air flotation[J]. China Water Supply and Drainage(中国给水排水),2009,25(7):62-64,68.
    [11] ZHOU Chao(周超). UV-H2O2study on degradation of nitrosamines in drinking water disinfection by-products[J]. Water Treatment Technology(水处理技术),2015,41(3):48-53.
    [12] XIA Ping(夏萍),ZHANG Dong(张东),ZHOU Xinyu(周新宇),et al.(UV/H2O2)Application of advanced oxidation process in drinking water treatment[J]. Water Purification Technology(净水技术),2012,31(4):17-19.
    [13] ZHANG Tao(张涛). Research on formation process of and control technology of dichloroacetonitrile,disinfection by-product in drinking water and its control strategies(饮用水中消毒副产物二氯乙腈的形成过程及控制技术研究)[D]. Hangzhou:Zhejiang University of Technology,2014.
    [14] LING Li,SUN Jianliang,FANG Jingyun,et al. Kinetics and mechanisms of degradation of chloroacetonitriles by the UV/H2O2process[J]. Water Research,2016,99:209-215.
    [15] PARK J S,CHOI H,AHN K H. The reaction mechanism of catalytic oxidation with hydrogen peroxide and ozone in aqueous solution[J]. Water Science&Technology:A Journal of the International Association on Water Pollution Research,2003,47(1):179-184.
    [16] SARATHYA S R,STEFAN M I,ROYCE A,et al. Pilot-scale UV/H2O2advanced oxidation process for surface water treatment and downstream biological treatment:effects on natural organic matter characteristics and DBP formation potential[J]. Environmental Technology,2011,32(15):1709-1718.
    [17] SUN Dezhi(孙德智). Advanced oxidation technology in environmental engineering(环境工程中的高级氧化技术)[M]. Beijing:Chemical Industry Press,2002.
    [18] KRISTIANA I,JOLL C,HEITZ A. Analysis of halonitriles in drinking water using solid-phase microextraction and gas chromatography-mass spectrometry[J]. Journal of Chromatography A,2012,1225(1):45-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700