超细晶钛及钛合金的腐蚀性能研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in Corrosion Properties of Ultrafine Grained Titanium
  • 作者:尹雁飞 ; 侯智敏 ; 赵彬 ; 毛小南 ; 赵永庆
  • 英文作者:Yin Yanfei;Hou Zhimin;Zhao Bin;Mao Xiaonan;Zhao Yongqing;Northwest Institute for Nonferrous Metal Research;
  • 关键词:超细晶钛及钛合金 ; 剧烈塑性变形 ; 腐蚀行为 ; 晶粒尺寸
  • 英文关键词:ultrafine grained titanium;;severe plastic deformation;;corrosion behavior;;grain size
  • 中文刊名:TGYJ
  • 英文刊名:Titanium Industry Progress
  • 机构:西北有色金属研究院;
  • 出版日期:2018-08-25
  • 出版单位:钛工业进展
  • 年:2018
  • 期:v.35
  • 基金:陕西省重点科技创新团队计划项目(2016KCT-27);; 陕西省重点研发计划项目(2017KW-ZD-08)
  • 语种:中文;
  • 页:TGYJ201804001
  • 页数:5
  • CN:04
  • ISSN:61-1292/TG
  • 分类号:6-10
摘要
通过剧烈塑性变形(SPD)技术制备的超细晶钛及钛合金,不仅具有优异的力学性能,其腐蚀性能也与普通粗晶材料明显不同。概述了通过SPD制备的超细晶钛及钛合金的组织特点,从实现超细化前后耐蚀性能的变化方面,介绍了国内外关于超细晶钛及钛合金腐蚀性能的最新研究进展。从位错密度、织构及晶粒尺寸分布等方面,归纳总结了不同因素对超细晶钛及钛合金腐蚀性能的影响。此外,还探讨了未来超细晶钛及钛合金腐蚀行为的研究方向,以期为研制兼具高强度和优良耐蚀性的新型材料提供借鉴。
        Ultrafine grained titanium prepared by severe plastic deformation( SPD) technique not only has excellent mechanical properties,but also demonstrates obviously different corrosion behavior compared with conventional coarse grained materials. The microstructure characteristics of UFG titanium prepared by SPD were summarized. And the recent progress on the corrosion behavior of UFG titanium at home and abroad was introduced in terms of the corrosion behavior changes before and after SPD treatment. The effects of dislocation density,texture and grain size distribution on the corrosion resistance of UFG titanium were summarized. In addition,the future research direction of the corrosion behavior of UFG titanium was also discussed in order to provide a reference for the development of new materials with high strength and excellent corrosion resistance.
引文
[1]Jia D,Wang Y M,Ramesh K T,et al.Deformation behavior and plastic instabilities of ultrafine-grained titanium[J].Applied Physics Letters,2001,79(5):611-613.
    [2]Masumura R A,Hazzledine P M,Pande C S.Yield stress of fine grained materials[J].Acta Materialia,1998,46(13):4527-4534.
    [3]Khan M N R.Nanocrystalline materials and coatings[J].Materials Science and Engineering:R:Reports,2004,45(1/2):1-88.
    [4]Gleiter H.Materials with ultrafine microstructures:Retrospectives and perspectives[J].Nanostructured Materials,1992,1(1):1-19.
    [5]Soudan P,Gaudet J,Guay D,et al.Electrochemical properties of ruthenium-based nanocrystalline materials as electrodes for supercapacitors[J].Chemistry of Materials,2002,14(3):1210-1215.
    [6]Mc Fadden S X,Mishra R S,Valiev R Z,et al.Lowtemperature superplasticity in nanostructured nickel and metal alloys[J].Nature,1999,398(6729):684-686.
    [7]Valiev R Z,Krasilnikov N A,Tsenev N K.Plastic deformation of alloys with submicron-grained structure[J].Materials Science and Engineering A,1991,137:35-40.
    [8]Zhu Y T,Huang J Y,Gubicza J,et al.Nanostructures in Ti processed by severe plastic deformation[J].Journal of Materials Research,2003,18(8):1908-1917.
    [9]Ueji R,Tsuji N,Minamino Y,et al.Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite[J].Acta Materialia,2002,50(16):4177-4189.
    [10]Yang D K,Cizek P,Hodgson P D,et al.Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium[J].Acta Materialia,2010,58(13):4536-4548.
    [11]Hebesberger T,Stywe H P,Vorhauer A,et al.Structureof Cu deformed by high pressure torsion[J].Acta Materialia,2005,53(2):393-402.
    [12]Yin Y F,Xu W,Sun Q Y,et al.Deformation and fracture behavior of commercially pure titanium with gradient nano-to-micron-grained surface layer[J].Transaction of Nonferrous Metals Society of China,2015,25(3):738-747.
    [13]Wang Y M,Chen M W,Zhou F H,et al.High tensile ductility in a nanostructured metal[J].Nature,2002,419(6910):912-915.
    [14]Raju K S,Sarma V S,Kauffmann A,et al.High strength and ductile ultrafine-grained Cu-Ag alloy through bimodal grain size,dislocation density and solute distribution[J].Acta Materialia,2013,61(1):228-238.
    [15]Fang T H,Li W L,Tao N R,et al.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J].Science,2011,331(6024):1587-1590.
    [16]Vinogradov A,Mimaki T,Hashimoto S,et al.On the corrosion behavior of ultra-fine grain copper[J].Scripta Materialia,1999,41(3):319-326.
    [17]Balyanov A,Kutnyakova J,Amirkhanova N A,et al.Corrosion resistance of ultra fine-grained Ti[J].Scripta Materialia,2004,51(3):225-229.
    [18]Pu Z,Yang S,Song G L,et al.Ultrafine-grained surface layer on Mg-Al-Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance[J].Scripta Materialia,2011,65(6):520-523.
    [19]Lv A Q,Zhang Y,Li Y,et al.Effect of nanocrystalline and twin boundaries on corrosion behavior of 316L stainless steel using SMAT[J].Acta Metallurgica Sinica(English Letters),2006,19(3):183-189.
    [20]Nejadseyfi O,Shokuhfar A,Dabiri A,et al.Combining equal-channel angular pressing and heat treatment to obtain enhanced corrosion resistance in 6061 aluminum alloy[J].Journal of Alloys and Compounds,2015,648:912-918.
    [21]Kim H S,Yoo S J,Ahn J W,et al.Ultrafine grained titanium sheets with high strength and high corrosion resistance[J].Materials Science and Engineering A,2011,528(29/30):8479-8485.
    [22]Garbacz H,Pisarek M,Kurzydowski K J.Corrosion resistance of nanostructured titanium[J].Biomolecular Engineering,2007,24(5):559-563.
    [23]Suresh K S,Geetha M,Richard C,et al.Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti-13Nb-13Zr alloy in simulated body fluid[J].Materials Science and Engineering C,2012,32:763-771.
    [24]Balakrishnan A,Lee B C,Kim T N,et al.Corrosion behaviour of ultra fine grained titanium in simulated body fluid for implant application[J].Trends in Biomaterials&Artificial Organs,2008,22(1):58-64.
    [25]Kim H S,Kim W J.Annealing effects on the corrosion resistance of ultrafine-grained pure titanium[J].Corrosion Science,2014,89:331-337.
    [26]Nie M,Wang C T,Qu M,et al.The corrosion behaviour of commercial purity titanium processed by high-pressure torsion[J].Journal of Materials Science,2014,49:2824-2831.
    [27]Hoseini M,Shahryari A,Omanovic S,et al.Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing[J].Corrosion Science,2009,51(12):3064-3067.
    [28]Gurao N P,Manivasagam G,Govindaraj P,et al.Effect of texture and grain size on bio-corrosion response of ultrafinegrained titanium[J].Metallurgical and Materials Transactions A,2013,44(12):5602-5610.
    [29]Vinogradov A,Mimaki T,Hashimoto S,et al.On the corrosion behavior of ultra-fine grain copper[J].Scripta Materialia,1999,41(3):319-326.
    [30]Orlov D,Ralston K D,Birbilis N,et al.Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing[J].Acta Materialia,2011,59(15):6176-6186.
    [31]Gollapudi S.Grain size distribution effects on the corrosion behaviour of materials[J].Corrosion Science,2012,62:90-94.
    [32]Ralston K D,Birbilis N,Davies C H J.Revealing the relationship between grain size and corrosion rate of metals[J].Scripta Materialia,2010,63(12):1201-1204.
    [33]Qian X R,Chou Y T.Correlation between grain boundary corrosion and grain boundary energy in niobium bicrystals[J].Philosophical Magazine A,1982,45(6):1075-1079.
    [34]Erb U,Gleiter H,Schwitzgebel G.The effect of boundary structure(energy)on interfacial corrosion[J].Acta Metallurgica,1982,30(7):1377-1380.
    [35]Saldana C,Murthy T G,Shankar M R,et al.Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag[J].Applied Physics Letters,2009,94(2):021910.
    [36]Lu K.Stabilizing nanostructures in metals using grain and twin boundary architectures[J].Nature Rviews:Materials,2016,1(5):1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700