基因表达分析稻瘟病菌中8个假定RhoGAP蛋白与几丁质合酶的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gene Expression Analysis between Eight Putative RhoGAP Proteins and Chitin Synthases in Magnaporthe oryzae
  • 作者:叶文雨 ; 豆献英 ; 陈美莲 ; 牛晓庆 ; 杨雪 ; 余文英 ; 鲁国东
  • 英文作者:Ye Wenyu;Dou Xianying;Chen Meilian;Niu Xiaoqing;Yang Xue;Yu Wenying;Lu Guodong;College of Life Sciences,Fujian Agriculture and Forestry University;College of Plant Protection,Fujian Agriculture and Forestry University;Coconut Research Institute,Chinese Academy of Tropical Agricultural Sciences;
  • 关键词:稻瘟病菌 ; RhoGAP ; 生物信息学 ; 几丁质合酶 ; Real-time ; PCR
  • 英文关键词:Magnaporthe oryzae;;RhoGAP;;Bioinformatics;;Chitin synthase;;Real-time PCR
  • 中文刊名:GXNB
  • 英文刊名:Genomics and Applied Biology
  • 机构:福建农林大学生命学院;福建农林大学植物保护学院;中国热带农业科学院椰子研究所;
  • 出版日期:2016-06-03 10:32
  • 出版单位:基因组学与应用生物学
  • 年:2016
  • 期:v.35
  • 基金:国家自然科学基金(31500118,31571943)资助
  • 语种:中文;
  • 页:GXNB201610048
  • 页数:6
  • CN:10
  • ISSN:45-1369/Q
  • 分类号:210-215
摘要
通过分析稻瘟病菌Rho GAP家族基因与几丁质合酶家族基因的表达关系,研究该家族基因对细胞壁形成的影响。利用不同生物信息学软件对Rho GAP家族进行序列分析,运用RT-PCR技术获得了该家族基因的部分c DNA序列,通过实时荧光定量技术分析Rho GAP基因与几丁质合酶基因的表达关系。结果表明,稻瘟病菌数据库中8个Rho GAP基因均含有保守的GAP结构域,且为水溶性蛋白,蛋白分子量相对较大,系统进化分析结果显示,16个Rho GTP酶激活蛋白可分为两类;不同的几丁质合成酶基因在不同Rho GAP基因突变体中的表达量不同,总的趋势是上调的。说明Rho GAP基因家族蛋白可能参与了稻瘟病菌不同阶段细胞壁的合成,本结果为进一步研究Rho GAP家族基因参与多样性的代谢途径奠定了基础。
        The objective of this study was to explore the influence of Rho GTPase activating proteins(Rho GAPs)on cell wall formation from expression level between Rho GAPs and chitin synthase members.Structure characteristics and properties of Rho GAP members and expression profile between Rho GAPs and chitin synthases were analyzed by bioinformatics and Real-time PCR in Magnaporthe oryzae.Eight putative Rho GAPs in M.oryzae contain conserved GAP domain and belong to WSP(water-soluble protein) with high molecular weight.Total 16 Rho GAP proteins were systematically identified into two classes.Real-time PCR showed that chitin synthase genes had differential expression levels in different mutants of Rho GAP members.Rho GAP members may involve in the synthesis of cell wall in the fungal different development stages.Our this work are helpful for studying the regulations of diverse metabolic pathways of Rho GAP members.
引文
Adams D.J.,2004,Fungal cell wall chitinases and glucanases Microbiology,150(7):2029-2035
    Chen J.S.,Zheng W.,Zheng S.Q.,Zhang D.M.,Sang W.J.,Chen X.,Li G.P,Lu G.D,and Wang Z.H,2008,Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea,Plo S Pathogens,(11):e10002002
    Diogon M.,Wissler F.,Quintin S.,Nagamatsu Y.,Sookhareea S.Landmann F.,Hutter H.,Vitale N.,and Labouesse M.,2007The Rho GAP RGA-2 and LET-502/ROCK achieve a bal ance of actomyosin-dependent forces in C.elegans epider mis to control morphogenesis,Development,134(13):24692479
    Fitch P.G.,Gammie A.E..,Lee D.J.,Candal V.B.D.,and Rose MD.,2004,Lrg1p Is a Rho1 GTPase-activating protein re quired for efficient cell fusion in yeast,Genetics,168(2)733-746
    Gooday G.W.,Zhu W.Y.,and O'Donnell R.W.,1992,What ar the roles of chitinases in the growing fungus,Fems Microbi ology Letters,100(1-3):387-392
    Nakano K.,Mutoh T.,and Mabuchi I.,2001,Characterization o GTPase-activating proteins for the function of the Rho-fami ly small GTPases in the fission yeast Schizosaccharomyce pombe,Genes to Cells,6(12):1031-1042
    Saitou N.,and Nei M.,1987,The neighbor-joining method:new method for reconstructing phylogenetic trees,Molecu lar Biology Evolution,4(4):406-425
    Sheng W.,Yamashita S.,Ohta A.,and Horiuchi H.,2013,Func ional differentiation of chitin synthases in Yarrowia lipolytica Bioscience Biotechnology and Biochemistry,77(6):1275-1281
    Wang T.,and Bretscher A.,1995,The rho-GAP encoded by BEM2 regulates cytoskeletal structure in budding yeast,Mo lecular Biology of the Cell,6(8):1011-1024
    Wendland J.,and Philippsen P.,2000,Determination of cell po larity in germinated spores and hyphal tips of the filamen tous ascomycete Ashbya gossypii requires a rho GAP homolog,Journal of Cell Science,113(9):1611-1621
    Xu L.H.,Zen H.K.,Zhong Z.H.,Chen X.F.,Zhang D.M.,and Wang Z.H.,2016,The study of bioinformatics analysis fo Mo SSPs and location for Mo SSP7 in rice fungal pathogen Magnaporthe grisea,Fenzi Zhiwu Yuzhong(Molecular Plan Breeding),14(4):780-786(徐凌鸿,郑华坤,钟振晖,陈晓峰,张冬梅,王宗华,2016,稻瘟病菌Mo SSPs生物信息学分析与Mo SSP7定位研究,分子植物育种,14(4):780-786)
    Ye W.Y.,Chen X.,Zhong Z.H.,Chen M.L.,Shi L.,Zheng H.K.Lin Y.H.,Zhang D.M.,Lu G.D.,Li G.P.,Chen J.S.,and Wang Z.H.,2014,Putative Rho GAP proteins orchestrat vegetative growth,conidiogenesis and pathogenicity of th rice blast fungus Magnaporthe oryzae,Fungal Genetics and Biology,67:37-50
    Zheng W.,Chen J.S.,Liu W.D.,Zheng S.Q.,Zhou J.,Lu G.D.and Wang Z.H.,2007,A Rho3 homolog is essential for ap pressorium development and pathogenicity of Magnaporth grisea,Eukaryotic Cell,6(12):2240-2250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700