用户名: 密码: 验证码:
草坪基质添加碳纳米材料对高羊茅生长和蚯蚓生理的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of carbon nanomaterial addition to turf media on Festuca arundinacea growth and earthworm physiology
  • 作者:王彦力 ; 白雪 ; 多立安 ; 赵树兰
  • 英文作者:WANG Yan-li;BAI Xue;DUO Li-an;ZHAO Shu-lan;Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University;
  • 关键词:碳纳米材料 ; 蚯蚓 ; 高羊茅 ; 抗氧化酶 ; MDA含量
  • 英文关键词:carbon nanomaterials;;earthworm;;Festuca arundinacea;;antioxidative enzyme;;MDA content
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:天津市动植物抗性重点实验室天津师范大学生命科学学院;
  • 出版日期:2019-04-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.284
  • 基金:国家自然科学基金项目(31870484,31470548)~~
  • 语种:中文;
  • 页:NHBH201904008
  • 页数:6
  • CN:04
  • ISSN:12-1347/S
  • 分类号:59-64
摘要
为探讨碳纳米材料对高羊茅生长和蚯蚓生理的影响,在草坪土壤基质中添加3种碳纳米材料(石墨烯、氧化石墨烯和碳纳米管),采用赤子爱胜蚓作为受试生物,研究了施加1%和3%碳纳米材料90 d后高羊茅生长、蚯蚓抗氧化酶活性和丙二醛(MDA)含量的变化。结果表明:不同比例的碳纳米材料对高羊茅的株高、地上鲜质量和干质量均没有显著影响。碳纳米材料均显著抑制了蚯蚓超氧化物歧化酶(SOD)的活性,3%碳纳米管的抑制率达到39.3%;暴露于3%氧化石墨烯,过氧化物酶(POD)活性显著降低;添加1%氧化石墨烯,过氧化氢酶(CAT)活性有所升高,添加3%碳纳米管和3%石墨烯,CAT活性显著低于1%氧化石墨烯处理。此外,碳纳米材料对蚯蚓体内的谷胱甘肽S-转移酶(GST)活性和MDA含量并无明显影响。因此,施加一定浓度的碳纳米材料不会影响草坪植物的生长,但其可以诱导蚯蚓体内活性氧(ROS)的产生,引起抗氧化酶活性发生变化,对土壤动物蚯蚓具有一定的毒性作用。
        In this study, we investigated the effects of carbon nanomaterials on Festuca arundinacea growth, antioxidant enzyme activities,and malondialdehyde content in Eisenia foetida by adding three types of carbon nanomaterials[graphene(G), graphene oxide(GO), and carbon nanotube(CNT)] to the turf media in different ratios(1% and 3%). Exposure to the carbon nanomaterials lasted for 90 days. We found no significant differences in plant height and shoot weights of Festuca arundinacea in the treatments with 1% and 3% of carbon nanomaterials. When earthworms were exposed to 1% and 3% of carbon nanomaterials, their superoxide dismutase(SOD)activity decreased significantly, with an inhibition rate of 39.3% in the treatment with 3% CNT. Peroxidase(POD)activity in Eisenia foetida decreased significantly,with an inhibition rate of 37.6% in the 3% GO treatment. Catalase(CAT)activity in Eisenia foetida increased in the 1% GO treatment, but decreased in treatments with 3% GNT and 3% G. In addition, we found no significant differences in Glutathione S-Transferase(GST)activity or malondialdehyde(MDA)content in earthworms exposed to carbon nanomaterials. These results suggest that a certain concentration of carbon nanomaterials will not affect turfgrass growth but can stimulate the production of ROS in earthworms and cause changes in the activities of antioxidant enzymes, indicating that carbon nanomaterials have some toxic effects on earthworms.
引文
[1] Han X, Li S, Peng Z, et al. Interactions between carbon nanomaterials and biomolecules[J]. Journal of Oleo Science, 2016, 65(1):1–7.
    [2]赵振杰,梁太波,陈千思,等.碳纳米材料对植物生长发育的调节作用[J].作物杂志, 2017(2):7–13.ZHAO Zhen-jie, LIANG Tai-bo, CHEN Qian-si, et al. The growth and development of plants regulated by carbon nano-materials[J]. Crops,2017(2):7–13.
    [3]杜佳媛,魏永鹏,刘菲菲,等.氧化石墨烯对环境污染物的吸附行为及吸附机理[J].地球科学进展, 2016, 31(11):1125–1136.DU Jia-yuan, WEI Yong-peng, LIU Fei-fei, et al. Adsorption behavior and mechanism of environmental pollutants on graphene oxide[J]. Advances in Earth Science, 2016, 31(11):1125–1136.
    [4] Francis A P, Devasena T. Toxicity of carbon nanotubes:A review[J].Toxicology&Industrial Health, 2018, 34(3):200–210.
    [5] Zhu S, Luo F, Chen W, et al. Toxicity evaluation of graphene oxide on cysts and three larval stages of Artemia salina[J]. Science of the Total Environment, 2017, 595:101–109.
    [6] Myer M H, Black M C. Multi-walled carbon nanotubes reduce toxicity of diphenhydramine to Ceriodaphnia dubiain water and sediment exposures[J]. Bulletin of Environmental Contamination&Toxicology, 2017,99(3):321–327.
    [7]李惠英,娄燕宏,胡涛,等.中国高羊茅种质资源遗传多样性的RAPD分析[J].草业学报, 2010, 19(6):208-214.LI Hui-ying, LOU Yan-hong, HU Tao, et al. Genetic diversity analysis of Chinese natural tall fescue(Festuca arundinacea)germplasms by RAPD[J]. Acta Prataculturae Sinica, 2010, 19(6):208-214.
    [8]颜增光,何巧力,李发生.蚯蚓生态毒理试验在土壤污染风险评价中的应用[J].环境科学研究, 2007, 20(1):134–142.YAN Zeng-guang, HE Qiao-li, LI Fa-sheng. The use of earthworm ecotoxicological test in risk assessment of soil contamination[J]. Research of Environmental Sciences, 2007, 20(1):134–142.
    [9] Spurgeon D J, Weeks J M, Van Gestel C A M. A summary of eleven years progress in earthworm ecotoxicology:The 7th international symposium on earthworm ecology. Cardiff. Wales. 2002[J]. Pedobiologia,2003, 47(5/6):588–606.
    [10]曹佳,刁晓平,胡继业,等.异恶草酮对蚯蚓抗氧化酶活性及DNA损伤的研究[J].农业环境科学学报, 2013, 32(5):925–931.CAO Jia, DIAO Xiao-ping, HU Ji-ye, et al. Effects of clomazone on antioxidative enzymes activity and DNA damage of earthworm(Eisenia foetida)[J]. Journal of Agro-Environment Science, 2013, 32(5):925–931.
    [11] Song Y, Zhu L S, Wang J, et al. DNA damage and effects on antioxidative enzymes in earthworm(Eisenia foetida)induced by atrazine[J].Soil Biology and Biochemistry, 2009, 41(5):905–909.
    [12] Liu S, Zhou Q, Chen C. Antioxidant enzyme activities and lipid peroxidation in earthworm Eisenia fetida exposed to 1, 3, 4, 6, 7, 8-hexahydro-4, 6, 6, 7, 8, 8-hexamethyl-cyclopenta-γ-2-benzopyran[J]. Environmental Toxicology, 2012, 27(8):472–479.
    [13] LinéC, Larue C, Flahaut E. Carbon nanotubes:Impacts and behaviour in the terrestrial ecosystem:A review[J]. Carbon, 2017, 123:767–785.
    [14] Zhang L, Hu C, Wang W, et al. Acute toxicity of multi-walled carbon nanotubes, sodium pentachlorophenate, and their complex on earthworm Eisenia fetida[J]. Ecotoxicology&Environmental Safety, 2014,103(1):29–35.
    [15] Zhao S, He L, Lu Y, et al. The impact of modified nano-carbon black on the earthworm Eisenia fetida under turfgrass growing conditions:Assessment of survival, biomass, and antioxidant enzymatic activities[J]. Journal of Hazardous Materials, 2017, 338:218–223.
    [16] Bradford M M. A rapid sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1):248–254.
    [17] Luo Y, Zang Y, Zhong Y, et al. Toxicological study of two novel pesticides on earthworm Eisenia fetida[J]. Chemosphere, 1999, 39(13):2347–2356.
    [18]徐镜波,袁晓凡,郎佩珍.过氧化氢酶活性及活性抑制的紫外分光光度测定[J].环境化学, 1997, 16(1):73–76.XU Jing-bo, YUAN Xiao-fan, LANG Pei-zhen. The determination of enzymic activity and its inhibition on catalase by ultraviolet spectrophotometry[J]. Environmental Chemistry, 1997, 16(1):73–76.
    [19] Kochba J, Lavee S, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic‘Shamouti’orange ovular callus lines[J].Plant&Cell Physiology,1977,18(2):463–467.
    [20] Habig W H, Pabst M J, Jakoby W B. Glutathione S-transferases:The first enzymatic step in mercapturic acid formation[J]. The Journal of Biological Chemistry, 1974, 249(22):7130–7139.
    [21] Livingstone D R. Biotechnology and pollution monitoring:Use of molecular biomarkers in the aquatic environment[J]. Journal of Chemical Technology&Biotechnology, 1993, 57(3):195–211.
    [22] Mukherjee A, Majumdar S, Servin A D, et al. Carbon nanomaterials in agriculture:A critical review[J]. Frontiers in Plant Science, 2016, 7(1770):172.
    [23] Lahiani M H, Dervishi E, Chen J, et al. Impact of cabon nanotube exposue to seeds of valuable crops[J]. ACS Applied Materials&Interfaces, 2013, 5(16):7965–7973.
    [24] RoubalováR, ProcházkováP, Dvo?ákJ, et al. The role of earthworm defense mechanisms in ecotoxicity studies[J]. Invertebrate Survival Journal, 2015, 12:203–213.
    [25]史雅静,徐晓宇,王宇,等.非致死剂量的四溴双酚A胁迫下蚯蚓的生长和抗氧化防御反应[J].生态毒理学报, 2017, 12(5):304–312.SHI Ya-jing, XU Xiao-yu, WANG Yu, et al. Growth inhibition and antioxidant enzyme response in earthworms(Eisenia fetida)exposed to tetrabromobisphenol A at non-lethal dose[J]. Asian Journal of Ecotoxicology, 2017, 12(5):304–312.
    [26] Sun Y, Yin Y, Zhang J, et al. Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No. 1 exposure[J]. Environmental Toxicology, 2010, 22(3):256–263.
    [27] Liu T, Wang X, Xu J, et al. Biochemical and genetic toxicity of dinotefuran on earthworms(Eisenia fetida)[J]. Chemosphere, 2017, 176:156–164.
    [28]姜锦林,单正军,周军英,等.常用农药对赤子爱胜蚓急性毒性和抗氧化酶系的影响[J].农业环境科学学报, 2017, 36(3):466–473.JIANG Jin-lin, SHAN Zheng-jun, ZHOU Jun-ying, et al. Influence of commonly used pesticides on acute toxicity to earthworm Eisenia fetida and alteration of antioxidant enzyme activities[J]. Journal of Agro-Environment Science, 2017, 36(3):466–473.
    [29]吴尔苗,王军良,赵士良,等.菲和芘单一及复合污染对蚯蚓抗氧化酶活性和丙二醛含量的影响[J].环境科学学报, 2011, 31(5):1077–1085.WU Er-miao, WANG Jun-liang, ZHAO Shi-liang, et al. Effect of single and combined pollution of Phe, Pyr on SOD, CAT activities and MDA content of Eisenia foetida in soils[J]. Acta Scientiae Circumstantiae, 2011, 31(5):1077–1085.
    [30]吕小慧,陈白杨,朱小山.氧化石墨烯的水环境行为及其生物毒性[J].中国环境科学, 2016, 36(11):3348–3359.LüXiao-hui, CHEN Bai-yang, ZHU Xiao-shan. Fate and toxicity of graphene oxide in aquatic environment[J]. China Environmental Science, 2016, 36(11):3348–3359.
    [31]薛银刚,王晓蓉,顾雪元,等.四溴双酚A对赤子爱胜蚓的急性毒性及抗氧化防御系统酶的影响[J].生态毒理学报, 2009, 4(1):93–100.XUE Yin-gang, WANG Xiao-rong, GU Xue-yuan, et al. Acute toxicity of tetrabromobisphenol A to earthworms Eisenia fetida and its effects on antioxidant defense system enzymes[J]. Asian Journal of Ecotoxicology 2009, 4(1):93–100.
    [32] Fazeli F, Ghorbanli M, Niknam V. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars[J]. Biologia Plantarum, 2007, 51(1):98–103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700