PDMS微流控芯片中的微通道加工技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microchannel Processing Technology in PDMS Microfluidic Chips
  • 作者:袁哲 ; 李宗安 ; 唐文来 ; 朱莉娅 ; 徐泽玮 ; 迟翔 ; 张馨宇 ; 杨继全
  • 英文作者:Yuan Zhe;Li Zong'an;Tang Wenlai;Zhu Liya;Xu Zewei;Chi Xiang;Zhang Xinyu;Yang Jiquan;Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing,Nanjing Normal University;Nanjing Industry Institute for Advanced Intelligent Equipment Co.,Ltd.;
  • 关键词:3D打印 ; PDMS ; 微流控芯片 ; 微纳制造 ; 电流体动力学(EHD)
  • 英文关键词:3D printing;;PDMS;;microfluidic chip;;micro-nano manufacturing;;electrohydrodynamics(EHD)
  • 中文刊名:BDTQ
  • 英文刊名:Micronanoelectronic Technology
  • 机构:南京师范大学江苏省三维打印装备与制造重点实验室;南京智能高端装备产业研究院有限公司;
  • 出版日期:2019-01-31
  • 出版单位:微纳电子技术
  • 年:2019
  • 期:v.56;No.502
  • 基金:江苏省自然科学基金资助项目(BK20180730);; 江苏省重点研发计划资助项目(BE2018010-1,BE2018010-2);; 江苏省高等学校自然科学研究基金资助项目(18KJB460021);; 南京师范大学高层次人才引进基金资助项目(184080H202B135)
  • 语种:中文;
  • 页:BDTQ201903013
  • 页数:9
  • CN:03
  • ISSN:13-1314/TN
  • 分类号:74-82
摘要
传统加工方法制作PDMS微流控芯片中的微通道存在诸多限制,特别是难以实现复杂三维微通道的加工。首先介绍了微通道的传统加工方法,接着简要介绍了不同3D打印技术的基本原理,最后重点阐述了3D打印技术在PDMS微流控芯片微通道加工中的应用。未来,微流控芯片中微通道的加工将会向着高通量、低成本、高精度、三维化、集成化、微型化的方向发展。3D打印、以纳米压印为主要代表的微纳制造技术与传统微通道成型技术的不断融合,为研究人员提供了更多的思路,必将成为微通道加工中的重要技术手段,推动微流控芯片在生物医学、检验检疫、分析化学等领域更广泛的应用。
        Traditional processing methods have many limitations in the fabrication of microchannels in PDMS microfluidic chips,especially for the complex three-dimensional micro channel.The traditional processing methods of microchannels are firstly introduced,and then the basic principles of different 3D printing technologies are briefly introduced.Finally,the applications of the3 D printing technology in the fabrication of PDMS microfluidic chip microchannels are emphatically expounded.In the future,the fabrication of microchannels in microfluidic chips will develop in the directions of high throughput,low cost,high precision,three-dimensional,integrated and miniaturized.The continuous integration of the 3D printing and micro-nano manufacturing technology with the nanoimprint as the main representative and traditional microchannel molding technology provides more ideas for researchers,and will become an important technical means in the microchannel processing,and promotes the wider application of microfluidic chips in fields of biomedicine,inspection and quarantine,and analytical chemistry.
引文
[1]周伟民,闵国全.纳米增材制造[J].微纳电子技术,2018,55(3):206-218.
    [2]杨继全,冯春梅.3D打印:面向未来的制造技术[M].北京:化学工业出版社,2014:1-32.
    [3] SHAPIRO A A,BORGONIA J P,CHEN Q N,et al.Additive manufacturing for aerospace flight applications[J].Journal of Spacecraft and Rockets,2016,53(5):1-8.
    [4] LEAL R,BARREIROS F M,ALVES L,et al.Additive manufacturing tooling for the automotive industry[J].The International Journal of Advanced Manufacturing Technology,2017,92(5/6/7/8):1671-1676.
    [5] YAP Y L,YEONG W Y.Additive manufacture of fashion and jewellery products:a mini review[J].Virtual and Physical Prototyping,2014,9(3):195-201.
    [6] CAMACHO D D,CLAYTON P,O'BRIEN W J,et al.Applications of additive manufacturing in the construction industry—a forward-looking review[J].Automation in Construction,2018,89:110-119.
    [7] ABOUHASHEM Y,DAYAL M,SAVANAH S,et al.The application of 3D printing in anatomy education[J].Medical Education Online,2015,20(1):1-11.
    [8]林炳承,秦建华.图解微流控芯片实验室[M].北京:科学出版社,2008:1-30.
    [9]罗怡,王晓东,杨帆,等.变温蠕变实验的COP微流控芯片热压制备[J].光学精密工程,2007,15(7):1090-1095.
    [10] DEBONO M,VOICU D,POUSTI M,et al.One-step fabrication of microchannels with integrated three dimensional features by hot intrusion embossing[J].Sensors,2016,16(12):2023-1-2023-11.
    [11] LIN T Y,DO T,KWON P,et al.3D printed metal molds for hot embossing plastic microfluidic devices[J].Lab on a Chip,2017,17(2):241-247.
    [12]楚纯朋,蒋炳炎,刘瑶,等.聚合物微流控芯片微通道复制成型技术[J].塑料工业,2008,36(10):1-5.
    [13] BECKER H,GRTNER C.Polymer microfabrication technologies for microfluidic systems[J].Analytical and Bioanalytical Chemistry,2008,390(1):89-111.
    [14] ZHUANG J.Analysis and numerical simulation of polymer melt filling in micro injection molding[J].Chinese Journal of Mechanical Engineering,2008,44(9):43.
    [15]《塑料模设计手册》编写组.塑料模设计手册[M].北京:机械工业出版社,2006:28-44.
    [16] WIEDEMEIER S,RMER R,WCHTER S,et al.Precision moulding of biomimetic disposable chips for dropletbased applications[J]. Microfluidics and Nanofluidics,2017,21(11):167-1-167-11.
    [17] SZYDZIK C,GAVELA A F,HERRANZ S,et al.An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics[J].Lab on a Chip,2017,17(16):2793-2804.
    [18] VERESHCHAGINA E,ANDREASSEN E,GAARDER R,et al.Synergy of 3D printing and injection molding:a new prototyping method for rapid design optimization and manufacturing of microfluidic devices[C]//Proceedings of the International Conference on Miniaturized Systems for Chemistry&Life Sciences.Savannah,USA,2017.
    [19] XIA Y,WHITESIDES G M.Soft lithography[J].Angewandte Chemie International Edition,1998,37(5):550-575.
    [20]常婧.利用PDMS微模塑设计和加工微流控红细胞流变特性测量芯片系统的初步研究[D].重庆:重庆大学,2009.
    [21]刘畅.基于PDMS的红细胞变形性微通道芯片研究[D].重庆:重庆大学,2010.
    [22]朱丽,杨利军,朱晓阳,等.一种基于液体模塑法的PDMS微流控芯片制备方法:中国,CN104998702A[P].2015-10-28.
    [23]王峥.基于微流控芯片技术的微量核酸扩增应用研究[D].武汉:华中科技大学,2016.
    [24] UGOLINI G S,VISONE R,REDAELLI A,et al.Generating multicompartmental 3D biological constructs interfaced through sequential injections in microfluidic devices[J].Advanced Healthcare Materials,2017,6(10):1601170-1-1601170-7.
    [25] ROBERTS M A,ROSSIER J S,BERCIER P,et al.UV laser machined polymer substrates for the development of microdiagnostic systems[J].Analytical Chemistry,1997,69(11):2035-2042.
    [26]汪鹏.PDMS在微流控生物芯片技术中的新型应用[D].上海:上海交通大学,2009.
    [27] FALLICA R,KIRCHNER R,SCHIFT H,et al.High-resolution grayscale patterning using extreme ultraviolet interference lithography[J].Microelectronic Engineering,2017,177:1-5.
    [28] SOCHOL R D,SWEET E,GLICK C C,et al.3D printed microfluidics and microelectronics[J].Microelectronic Engineering,2018,189:52-68.
    [29] CRUMP S S.Apparatus and method for creating three-dimensional objects:US,US5121329[P].1992-06-09.
    [30] GRATSON G M,XU M J,LEWIS J A.Microperiodic structures:direct writing of three-dimensional webs[J].Nature,2004,428(6981):386.
    [31] KITSON P J,ROSNES M H,SANS V,et al.Configurable3D-printed millifluidic and microfluidic'lab on a chip'reactionware devices[J].Lab on a Chip,2012,12(18):3267-3271.
    [32] BISHOP G W,SATTERWHITE J E,BHAKTA S,et al.3D-printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated prussian blue nanoparticle-modified electrodes[J].Analytical Chemistry,2015,87(10):5437-5443.
    [33] HE Y,QIU J J,FU J Z,et al.Printing3D microfluidic chips with a 3D sugar printer[J].Microfluidics and Nanofluidics,2015,19(2):447-456.
    [34] PAREKH D P,LADD C,PANICH L,et al.3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels[J].Lab on a Chip,2016,16(10):1812-1820.
    [35] KODAMA H.Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer[J].Review of Scientific Instruments,1981,52(11):1770-1773.
    [36] SHALLAN A I,SMEJKAL P,CORBAN M,et al.Cost-effective three-dimensional printing of visibly transparent microchips within minutes[J].Analytical Chemistry,2014,86(6):3124-3130.
    [37] LEE M P,COOPER G J T,HINKLEY T,et al.Development of a 3D printer using scanning projection stereolithography[J].Scientific Reports,2015,5:9875-1-9875-5.
    [38] CHAN H N,CHEN Y F,SHU Y W,et al.Direct,one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips[J].Microfluidics and Nanofluidics,2015,19(1):9-18.
    [39] GONG H,BICKHAM B P,WOOLLEY A T,et al.Custom3D printer and resin for 18μm×20μm microfluidic flow channels[J].Lab on a Chip,2017,17(17):2899-2909.
    [40] SPIVEY E C,XHEMALCE B,SHEAR J B,et al.3D-printed microfluidic microdissector for high-throughput studies of cellular aging[J].Analytical Chemistry,2014,86(15):7406-7412.
    [41] WU D,NIU L G,WU S Z,et al.Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100%success rate[J].Lab on a Chip,2015,15(6):1515-1523.
    [42] YAMANE M,KAWAGUCHI T,KAGAYAMA S,et al.Apparatus and method for forming three-dimensional article:USA,US5059266[P].1991-10-22.
    [43] ALMQUIST T A,SMALLEY D R.Thermal stereolithography:USA,US5676904[P].1997-10-14.
    [44] ANDERSON K B,LOCKWOOD S Y,MARTIN R S,et al.A3D printed fluidic device that enables integrated features[J].Analytical Chemistry,2013,85(12):5622-5626.
    [45] ERKAL J L,SELIMOVIC A,GROSS B C,et al.3D printed microfluidic devices with integrated versatile and reusable electrodes[J].Lab on a Chip,2014,14(12):2023-2032.
    [46] LI Z A,HOU L Y,ZHANG W Y,et al.Preparation of PDMS microfluidic devices based on drop-on-demand generation of wax molds[J].Analytical Methods,2014,6(13):4716-4722.
    [47] SOCHOL R D,SWEET E,GLICK C C,et al.3D printed microfluidic circuitry via multijet-based additive manufacturing[J].Lab on a Chip,2016,16(4):668-678.
    [48] PARK J U,HARDY M,KANG S J,et al.High-resolution electrohydrodynamic jet printing[J]. Nature Materials,2007,6(10):782-789.
    [49]钱垒.电场驱动喷射沉积3D打印技术研究[D].青岛:青岛理工大学,2018.
    [50]WEI C,DONG J Y.Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting[J].Journal of Micromechanics and Microengineering,2013,23(2):025017-1-025017-9.
    [51] HAN Y W,WEI C,DONG J Y.Super-resolution electrohydrodynamic(EHD)3D printing of micro-structures using phase-change inks[J]. Manufacturing Letters,2014,2(4):96-99.
    [52] HAN Y W,DONG J Y.Design of integrated ring extractor for high resolution electrohydrodynamic(EHD)3D printing[J].Procedia Manufacturing,2016,5(3):1031-1042.
    [53] LI Z A,HOU L Y,ZHANG W Y,et al.Preparation of PDMS microfluidic devices based on drop-on-demand generation of wax molds[J].Analytical Methods,2014,6(13):4716-4722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700