磁性印迹交联AA/AM接枝酯化氰乙基木薯淀粉微球的制备与吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and adsorpting property of magnetic imprinted crosslinked acrylic acid/acrylamide grafted-esterified cyanoethyl cassava starch microspheres
  • 作者:李和平 ; 龚俊 ; 张淑芬 ; 张俊 ; 胡英相
  • 英文作者:LI Heping;GONG Jun;ZHANG Shufen;ZHANG Jun;HU Yingxiang;College of Chemistry and Biology Engineering,Guilin University of Technology;State Key Laboratory of Fine Chemicals,Dalian University of Technology;
  • 关键词:接枝酯化氰乙基木薯淀粉 ; 磁性印迹微球 ; 离子印迹 ; 铜离子吸附
  • 英文关键词:grafted-esterified cyanoethyl cassava starch;;magnetic imprinted microspheres;;ion imprinting;;copper ion adsorption
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:桂林理工大学化学与生物工程学院;大连理工大学精细化工国家重点实验室;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:广西特聘专家专项项目;; 国家自然科学基金(21466010);; 桂林市科学研究与技术开发计划(20150105-5)
  • 语种:中文;
  • 页:HGJZ201904039
  • 页数:11
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:341-351
摘要
以木薯淀粉为主要原料,通过醚化、酯化、接枝三步反应,合成了交联AA/AM接枝酯化氰乙基木薯淀粉。然后以Fe_3O_4为磁性核中心,在反相乳液中制得磁性复合改性淀粉微球;进一步以Cu~(2+)为模板离子,经表面印迹修饰得到一种对Cu~(2+)具有选择吸附性的磁性印迹交联AA/AM接枝酯化氰乙基木薯淀粉衍生物微球(Cu-ⅡPs)。CuⅡPs粒径分布均匀,平均粒径为15.60μm,对Cu~(2+)的吸附率可达98.18%。采用红外光谱、扫描电子显微镜、X射线衍射仪、振动样品磁强计和综合热分析仪对Cu-ⅡPs的结构进行了表征。通过量子化学计算,对优化结构的Cu-ⅡPs的前线轨道、电子密度分布以及Fukui指数进行分析,研究了Cu-ⅡPs的吸附机理,说明Cu-ⅡPs能够与Cu~(2+)形成稳定的配合物,确定了可能的吸附活性位点。通过分子前线轨道理论和电荷分布解释了吸附剂与Cu~(2+)发生吸附时的电子转移机制。
        The crosslinked acrylic acid/acrylamide grafted-esterified cyanoethyl cassava starch was synthesized by using cassava starch as main raw material through three steps of etherification esterification and grafting. Then magnetic composite modified starzzch microspheres were prepared in inverse emulsion by using Fe_3O_4 as the nucleus. Subsequently the magnetic imprinted crosslinked acrylic acid/acrylamide grafted-esterified cyanoethyl cassava starch microspheres(Cu-ⅡPs) with selective adsorption to Cu~(2+)was obtained by surface imprinting modification using Cu~(2+)as template ion. The particle size of Cu-ⅡPs was uniformly distributed with the averages particle size of 15.60μm. And the adsorption ratio of Cu-ⅡPs to Cu~(2+)can reach to 98.18%. The structure of the Cu-ⅡPs were characterized by IR, SEM,XRD, VSM and TG-DTG techniques. The frontier orbitals,electron density distribution and Fukui index of optimized Cu-ⅡPs were analysed by quantum chemical calculation. The adsorption mechanism of CuⅡPs was studied. The results showed that the magnetic imprinted polymers could form stable coordination compounds with Cu~(2+), and determined the potential adsorption activity sites. The mechanism of electron transfer between adsorbents and Cu~(2+)was explained by frontier molecular orbital theory and electron distribution.
引文
[1] POURJAVADI A, MOTAMEDI A, HOSSEINI S H, et al. Magnetic starch nanocomposite as a green heterogeneous support for immobilization of large amounts of copper ions:heterogeneous catalyst for click synthesis of 1,2,3-triazoles[J]. RSC Advances, 2016, 6(23):19128-19135.
    [2] YANG X, JIN D, ZHANG M, et al. Fabrication and application of magnetic starch-based activated hierarchical porous carbon spheres for the efficient removal of dyes from water[J]. Materials Chemistry&Physics, 2016, 174:179-186.
    [3]钱斯日古楞,吕洋,王红英,等.磁性多孔淀粉微球的制备及性质[J].化工学报, 2014, 65(s2):299-303.QIAN S R G L, LüY, WANG H Y, et al. Preparation and characteristics of magnetic porous starch microspheres[J]. CIESC Journal, 2014, 65(s2):299-303
    [4] WANG B W, CHENG F S, LU Y Y, et al. Immobilization of pectinase from penicillium oxalicum, F67 onto magnetic cornstarch microspheres:characterization and application in juice production[J].Journal of Molecular Catalysis B:Enzymatic, 2013, 97:137-143.
    [5]潘建新.磁性淀粉微球的功能化及吸附性能研究[D].广州:广东工业大学, 2014.PAN J X. Functionalization and adsorption properties of magnetic starch microspheres[D]. Guangzhou:Guangdong University of Technology, 2014.
    [6] LIN Q, PAN J, LIN Q, et al. Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere[J]. Journal of Hazardous Materials, 2013, 263:517-524.
    [7] XIANG B, FAN W, YI X, et al. Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance[J].Carbohydrate Polymers, 2016, 136:30-37.
    [8] KHANOONKON N, YOKSAN R, OGALE A A. Effect of stearic acidgrafted starch compatibilizer on properties of linear low density polyethylene/thermoplasticstarchblownfilm[J].CarbohydratePolymers,2016,137:165-173.
    [9] ZIA-UD-DIN, XIONG H G, FEI P. Physical and chemical modification of starches:a review[J]. Critical Reviews in Food Science and Nutrition, 2015, 57(12):2691-2705.
    [10] MA X F, LIU X Y, ANDERSON D P, et al. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution[J].Food Chemistry, 2015, 181:133-139.
    [11] EL-HAMSHARY H, FOUDA M M, MOYDEEN M, et al. Removal of heavy metal using poly(N-vinylimidazole)-grafted-carboxymethylated starch[J]. International Journal of Biological Macromolecules, 2014,66:289-294.
    [12] ABDEL-HALIM E S, AL-DEYAB S S. Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions[J]. Reactive&Functional Polymers, 2014, 75(1):1-8.
    [13] GRINBERG O, GEDANKEN A. The development and characterization of starch microspheres prepared by a sonochemical method for the potential drug delivery of insulin[J]. Macromolecular Chemistry&Physics, 2010, 211(8):924-931.
    [14]谢新玲,罗冯笑,童张法,等.磁性木薯淀粉微球的结构表征及反应机理研究[J].化工新型材料, 2014, 42(9):158-160.XIE X L, LUO F X, TONG Z F, et al. Characterization and research of reaction mechanism of magnetic cassava starch microspheres[J]. New Chemical Materials, 2014, 42(9):158-160.
    [15] HE Q X, SONG P, ZHANG Z P, et al. Preparation of magnetic gelatinstarch microspheres and adsorption performance for bovine serum album[J]. Journal of Central South University, 2015, 22(4):1220-1226.
    [16] WOJTASZ J, CARLSTEDT J, FYHR P, et al. Hydration and swelling of amorphous cross-linked starch microspheres[J]. Carbohydrate Polymers, 2016, 135:225-233.
    [17] KANG R F, QIU L, FANG L L, et al. A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater[J]. Journal of Environmental Chemical Engineering, 2016, 4(2):2268-2277.
    [18] SHAKERIAN F, KIM K H, KWON E, et al. Advanced polymeric materials:synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions[J]. Trac Trends in Analytical Chemistry, 2016, 83:55-69.
    [19] SUI D P, CHEN H X, LIU L, et al. Ion-imprinted silica adsorbent modified diffusive gradients in thin films technique:tool for speciation analysis of free lead species[J]. Talanta, 2016, 148:285-291.
    [20] ERGüN B, BAYDEMIR G, ANDA?M, et al. Ion imprinted beads embedded cryogels for in vitro removal of iron fromβ-thalassemic human plasma[J]. Journal of Applied Polymer Science, 2012, 125(1):254-262.
    [21] DOLAK I, KE?ILI R, HüR D, et al. Ion-imprinted polymers for selective recognition of neodymium(Ⅲ)in environmental samples[J].Industrial&Engineering Chemistry Research, 2015, 54(19):5328-5335.
    [22] TAMAHKAR E, DENIZLI A. Metal ion coordination interactions for biomolecule recognition:a review[J]. Hittite Journal of Science&Engineering, 2014, 1(1):21-26.
    [23] KAZEMI E, SHABANI A M H, DADFARNIA S. Synthesis and characterization of a nanomagnetic ion imprinted polymer for selective extraction of silver ions from aqueous samples[J]. Microchimica Acta,2015, 182(5/6):1025-1033.
    [24] FAYAZI M, TAHER M A, AFZALI D, et al. Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(Ⅱ)ions.[J]. Materials Science&Engineering C:Materials for Biological Applications, 2016, 60:365-373.
    [25] KHODDAMI N, SHEMIRANI F. A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples[J]. Talanta, 2016, 146:244-252.
    [26] IUGA C, ALVAREZ-IDABOY J R, RUSSO N. Antioxidant activity of trans-resveratroltowardhydroxylandhydroperoxylradicals:aquantum chemical and computational kinetics study.[J]. Journal of Organic Chemistry, 2012, 77(8):3868-3877.
    [27]张一江,柳鑫华,陈智慧,等. L-半胱氨酸改性聚环氧琥珀酸的合成及其阻垢缓蚀性能[J].化工学报, 2016, 67(10):4344-4355.ZHANG Y J, LIU X H, CHEN Z H, et al. Synthesis of L-cysteine modified polyepoxysuccinic acid and evaluation of its inhibition on scale deposition and corrosion[J]. CIESC Journal, 2016, 67(10):4344-4355.
    [28] DEY T, GHOSH S, GHOSH S, et al. 5-Arylidene derivatives of meldrum’s acid:synthesis, structural characterization using single crystal and powder crystal X-ray diffraction, and electronic properties[J]. Journal of Molecular Structure, 2015, 1092:51-62.
    [29] IRFAN A, CHAUDHRY A R, AL-SEHEMI A G, et al. Investigating the effect of acene-fusion and trifluoroacetyl substitution on the electronic and charge transport properties by density functional theory[J]. Journal of Saudi Chemical Society, 2016, 20(3):336-342.
    [30] JU H, KAI Z P, LI Y. Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media:a quantum chemical calculation[J]. Corrosion Science, 2008, 50(3):865-871.
    [31] ALA?ALVAR C, SOYLU M S, GüDER A, et al. Molecular structure,quantummechanicalcalculationandradicalscavengingactivitiesof(E)-4, 6-dibromo-2-[(3, 5-dimethylphenylimino)methyl]-3-methoxy phenol and(E)-4,6-dibromo-2-[(2,6-dimethylphenylimino)methyl]-3-methoxyphenolcompounds[J].SpectrochimicaActaPartA:Molecular&Biomolecular Spectroscopy, 2014, 130(17):357-366.
    [32] IRFAN A, AL-SEHEMI A G. Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection[J]. Original Paper, 2012,18:4893-4900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700