近红外光驱动的UCNPs/Zn_xCd_(1-x)S纳米复合结构的化学合成并用于光化学还原六价铬(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Facile synthesis of UCNPs/Zn_xCd_(1-x)S nanocomposites excited by near-infrared light for photochemical reduction and removal of Cr(Ⅵ)
  • 作者:赵孟莉 ; 王婉妮 ; 黄辰曦 ; 董旺 ; 汪洋 ; 程盛 ; 王慧庆 ; 钱海生
  • 英文作者:Mengli Zhao;Wanni Wang;Chenxi Huang;Wang Dong;Yang Wang;Sheng Cheng;Huiqing Wang;Haisheng Qian;School of Biological and Medical Engineering, Hefei University of Technology;Instrumental Analysis Center, Hefei University of Technology;School of Chemistry and Chemical Engineering, Hefei University of Technology;
  • 关键词:上转换纳米颗粒 ; Zn_xCd_(1-x)S合金半导体 ; 蛋黄-蛋壳结构 ; 光催化 ; 水热合成
  • 英文关键词:Upconversion nanoparticle;;Zn_xCd_(1-x)S alloyed semiconductor;;Yolk-shell;;Photocatalysis;;Hydrothermal synthesis
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:合肥工业大学生物与医学工程学院;合肥工业大学分析测试中心;合肥工业大学化学与化工学院;
  • 出版日期:2018-06-11
  • 出版单位:催化学报
  • 年:2018
  • 期:v.39
  • 基金:supported by the National Natural Science Foundation of China (21471043, 51603059, 31501576)~~
  • 语种:英文;
  • 页:CHUA201807012
  • 页数:10
  • CN:07
  • ISSN:21-1601/O6
  • 分类号:121-130
摘要
近红外光约占入射太阳能的44%以上,为实现太阳能量的最大化利用,近红外光(NIR)驱动的光催化技术成为科学研究的热点.由于上转换荧光纳米材料(UCNPs)是优良的红外能量转换器,合金半导体Zn_xC d_(1‐x)S具有较好的化学稳定性以及生物相容性,本文发展了一种简易的水热法,将UCNPs和Zn_xC d_(1‐x)S合金结合,成功构建了NIR与可见光响应的核壳纳米结构.由于这两种材料的晶格失配度较高,很难直接外延生长,我们通过引入非晶TiO_2将形成的催化剂纳米颗粒Zn_xC d_(1‐x)S紧紧束缚在UCNPs外面形成蛋黄-蛋壳结构,在NIR光照下获得了较高的能量转换效率.首先,在UCNPs外面外延生长一层复合物,形成复合纳米结构,然后在其核壳结构外面外延生长薄层的非晶以稳定后续要制备的合金半导体Zn_xC d_(1‐x)S;在水热条件下,与醋酸镉和硫脲反应,形成UCNPs@Zn_xC d_(1‐x)S/TiO_2复合材料.在此,我们选择Yb(20%),Er(2%)作为NIR的能量转换器.样品的形貌、物相及化学组成分别采用场发射扫描电子显微镜、透射电子显微镜、X射线衍射和原子吸收光谱法进行表征.研究表明,我们成功制备了具有蛋黄-蛋壳结构的UCNPs@Zn_xC d_(1‐x)S/TiO_2纳米颗粒.此外,非晶态TiO_2将UCNPs与Zn_xC d_(1‐x)S紧密结合,对最终样品UCNPs@Zn_xC d_(1‐x)S核壳纳米粒子的形成起到重要作用.而且,合金Zn_xC d_(1‐x)S的化学组成可通过调整镉源和锌源的用量进行调节.所制备的UCNPs@Zn_xC d_(1‐x)S核壳纳米粒子在NIR光线或模拟太阳光照射下显示出高效的光化学还原Cr(Ⅵ)性能.溶液中70%以上的Cr(Ⅵ)在NIR光照射30 min后被还原为Cr(Ⅲ).本研究将为环境污水处理和太阳能利用提供一种可供选择的策略,且所制的复合纳米结构在肿瘤治疗、药物释放和能量转换等领域也有着潜在的应用价值.
        Photocatalysis driven by near-infrared(NIR)light is of scientific and technological interest for ex-ploiting solar energy.In this study,we demonstrate a facile hydrothermal process to synthesize core-shell nanoparticles combining upconversion nanoparticles(UCNPs)and alloyed ZnxCwhich can be excited using NIR or visible light.Morphologies,phase,and chemical composition have been investigated using field-emission scanning electron microscopy,transmission electron mi-croscopy,X-ray diffraction analysis,and atomic absorption spectroscopy.Moreover,we found that amorphous TiO_2 layers existing in the final samples play an important role in formation ofyolk-shell nanoparticles,which bind the as-prepared ZnxCnanoparticlescan be tuna-ble by adjusting the amount of the Cd and Zn source compounds.The photochemical reduction of Cr(Ⅵ)in water has been performed to study the photocatalytic performance under irradiation by NIR light or a simulated solar light,showing efficient photoreduction and Cr(Ⅵ)removal over the/TiO_2 yolk-shell nanoparticles.The as-prepared UCNPs@ZnxC/TiO_2 nanoparticles show excellent production of hydroxyl radicals,which are responsible for the photochemical reduction of Cr(Ⅵ)to Cr(Ⅲ).This study will provide an alternative strategy for en-vironmental wastewater treatment,making full use of solar energy.
引文
[1]B.Dhal,H.N.Thatoi,N.N.Das,B.D.Pandey,J.Hazard.Mater.,2013,250,272-291.
    [2]Q.Wang,X.D.Shi,J.J.Xu,J.C.Crittenden,E.Q.Liu,Y.Zhang,Y.Q.Cong,J.Hazard.Mater.,2016,307,213-220.
    [3]C.C.Wang,X.D.Du,J.Li,X.X.Guo,P.Wang,J.Zhang,Appl.Catal.B,2016,193,198-216.
    [4]X.D.Meng,G.K.Zhang,N.Li,Chem.Eng.J.,2017,314,249-256.
    [5]H.Wang,X.Z.Yuan,Y.Wu,G.M.Zeng,X.H.Chen,L.J.Leng,Z.B.Wu,L.B.Jiang,H.Li,J.Hazard.Mater.,2015,286,187-194.
    [6]S.C.Xu,S.S.Pan,Y.Xu,Y.Y.Luo,Y.X.Zhang,G.H.Li,J.Hazard.Mater.,2015,283,7-13.
    [7]W.Y.Duan,G.D.Chen,C.X.Chen,R.Sanghvi,A.Iddya,S.Walker,H.Z.Liu,A.Ronen,D.Jassby,J.Membr.Sci.,2017,531,160-171.
    [8]B.B.Huang,C.Y.Qi,Z.Yang,Q.Guo,W.Q.Chen,G.M.Zeng,C.Lei,J.Catal.,2017,352,337-350.
    [9]B.G.Zhang,C.P.Feng,J.R.Ni,J.Zhang,W.L.Huang,J.Power Sources,2012,204,34-39.
    [10]C.Y.Lai,L.Zhong,Y.Zhang,J.X.Chen,L.L.Wen,L.D.Shi,Y.P.Sun,F.Ma,B.E.Rittmann,C.Zhou,Y.N.Tang,P.Zheng,H.P.Zhao,Environ.Sci.Technol.,2016,50,5832-5839.
    [11]H.L.Ma,Y.W.Zhang,Q.H.Hu,D.Yan,Z.Z.Yu,M.L.Zhai,J.Mater.Chem.,2012,22,5914-5916.
    [12]C.F.Qiao,L.Sun,S.Zhang,P.Liu,L.L.Chang,C.S.Zhou,Q.Wei,S.P.Chen,S.L.Gao,J.Mater.Chem.C,2017,5,1064-1073.
    [13]X.H.Gao,H.B.Wu,L.X.Zheng,Y.J.Zhong,Y.Hu,X.W.Lou,Angew.Chem.Int.Ed.,2014,53,5917-5921.
    [14]B.A.Marinho,R.O.Cristóv?o,R.Djellabi,J.M.Loureiro,R.A.R.Boaventura,V.J.P.Vilar,Appl.Catal.B,2017,203,18-30.
    [15]S.L.Wang,J.J.Li,X.P.Zhou,C.C.Zheng,J.Q.Ning,Y.J.Zhong,Y.Hu,J.Mater.Chem.A,2014,2,19815-19821.
    [16]B.Qin,Y.B.Zhao,H.Li,L.Qiu,Z.Fan,Chin.J.Catal.,2015,36,1321-1325.
    [17]M.Celebi,M.Yurderi,A.Bulut,M.Kaya,M.Zahmakiran,Appl.Catal.B,2016,180,53-64.
    [18]Z.Q.He,Q.L.Cai,M.Wu,Y.Q.Shi,H.Y.Fang,L.D.Li,J.C.Chen,J.M.Chen,S.Song,Ind.Eng.Chem.Res.,2013,52,9556-9565.
    [19]Y.C.Deng,L.Tang,G.M.Zeng,Z.J.Zhu,M.Yan,Y.Y.Zhou,J.J.Wang,Y.N.Liu,J.J.Wang,Appl.Catal.B,2017,203,343-354.
    [20]Y.Z.Liu,S.S.Ding,J.Xu,H.Y.Zhang,S.G.Yang,X.G.Duan,H.Q.Sun,S.B.Wang,Chin.J.Catal.,2017,38,1052-1062.
    [21]D.Dinda,A.Gupta,S.K.Saha,J.Mater.Chem.A,2013,1,11221-11228.
    [22]H.Tian,S.C.Wang,C.Zhang,J.P.Veder,J.Pan,M.Jaroniec,L.Z.Wang,J.Liu,J.Mater.Chem.A,2017,5,11615-11622.
    [23]M.W.Wang,Y.Boyjoo,J.Pan,S.B.Wang,J.Liu,Chin.J.Catal.,2017,38,970-990.
    [24]J.Y.Yu,S.D.Zhuang,X.Y.Xu,W.C.Zhu,B.Feng,J.G.Hu,J.Mater.Chem.A,2015,3,1199-1207.
    [25]C.Cui,M.J.Tou,M.H.Li,Z.G.Luo,L.B.Xiao,S.Bai,Z.Q.Li,Inorg.Chem.,2017,56,2328-2336.
    [26]M.J.Tou,Y.Y.Mei,S.Bai,Z.G.Luo,Y.Zhang,Z.Q.Li,Nanoscale,2016,8,553-562.
    [27]X.H.Liu,W.H.Di,W.P.Qin,Appl.Catal.B,2017,205,158-164.
    [28]X.Y.Guo,C.F.Chen,D.Q.Zhang,C.P.Tripp,S.Y.Yin,W.P.Qin,RSCAdv.,2016,6,8127-8133.
    [29]W.N.Wang,F.Zhang,C.L.Zhang,Y.Wang,W.Tao,S.Cheng,H.S.Qian,Chin.J.Catal.,2017,38,1851-1859.
    [30]X.M.Li,F.Zhang,D.Y Zhao,Chem.Soc.Rev.,2015,44,1346-1378.
    [31]F.Wang,Y.Han,C.S.Lim,Y.H.Lu,J.Wang,J.Xu,H.Y.Chen,C.Zhang,M.H.Hong,X.G.Liu,Nature,2010,463,1061-1065.
    [32]F.Wang,R.R.Deng,J.Wang,Q.X.Wang,Y.Han,H.M.Zhu,X.Y.Chen,X.G.Liu,Nat.Mater.,2011,10,968-973.
    [33]Y.X.Liu,D.S.Wang,J.X.Shi,Q.Peng,Y.D.Li,Angew.Chem.Int.Ed.,2013,52,4366-4369.
    [34]H.Dong,L.D.Sun,Y.F.Wang,J.Ke,R.Si,J.W.Xiao,G.M.Lyu,S.Shi,C.H.Yan,J.Am.Chem.Soc.,2015,137,6569-6576.
    [35]Y.W.Li,C.X.Huang,W.Tao,H.S.Qian,Chin.J.Inorg.Chem.,2017,33,361-376.
    [36]J.Liu,S.Z.Qiao,J.S.Chen,X.W.Lou,X.Xing,G.Q.Lu,Chem.Commun.,2011,47,12578-12591.
    [37]B.B.Ding,H.Y.Peng,H.S.Qian,L.Zheng,S.H.Yu,Adv.Mater.Interfaces,2016,3,1500649.
    [38]F.Zhang,W.N.Wang,H.P.Cong,L.B.Luo,Z.B.Zha,H.S.Qian,Part.Part.Syst.Charact.,2017,34,1600222.
    [39]W.N.Wang,C.X.Huang,C.Y.Zhang,M.L.Zhao,J.Zhang,H.J.Chen,Z.B.Zha,T.T.Zhao,H.S.Qian,Appl.Catal.B,2018,224,854-862.
    [40]C.X.Huang,H.J.Chen,F.Li,W.N.Wang,D.D.Li,X.Z.Yang,Z.H.Miao,Z.B.Zha,Y.Lu,H.S.Qian,J.Mater.Chem.B,2017,5,9487-9496.
    [41]F.Zhang,C.L.Zhang,H.Y.Peng,H.P.Cong,H.S.Qian,Part.Part.Syst.Charact.,2016,33,248-253.
    [42]J.Chen,F.Zhang,Y.L.Zhao,Y.C.Guo,P.Gong,Z.Q.Li,H.S.Qian,Appl.Surf.Sci.,2016,362,126-131.
    [43]S.N.Guo,Y.L.Min,J.C.Fan,Q.J.Xu,ACS Appl.Mater.Interfaces,2016,8,2928-2934.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700