钴盐阴离子基团对Co-N-C催化剂电催化活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts
  • 作者:夏艺萌 ; 吴帅 ; 谭丰 ; 李卫 ; 魏清茂 ; 闵春刚 ; 杨喜昆
  • 英文作者:XIA Yimeng;WU Shuai;TAN Feng;LI Wei;WEI Qingmao;MIN Chungang;YANG Xikun;College of Material Science and Engineering,Kunming University of Science and Technology;Research Center for Analysis and Measurement,Kunming University of Science and Technology;
  • 关键词:Co-N-C催化剂 ; 聚苯胺 ; 钴盐 ; 阴离子基团 ; 电催化活性
  • 英文关键词:Co-N-C catalyst;;polyaniline;;cobalt salt;;anionic groups;;electrocatalytic activity
  • 中文刊名:CLDB
  • 英文刊名:Materials Review
  • 机构:昆明理工大学材料科学与工程学院;昆明理工大学分析测试研究中心;
  • 出版日期:2018-02-10
  • 出版单位:材料导报
  • 年:2018
  • 期:v.32
  • 基金:国家自然科学基金(21363012;51374117)
  • 语种:中文;
  • 页:CLDB201803003
  • 页数:7
  • CN:03
  • ISSN:50-1078/TB
  • 分类号:29-34+39
摘要
采用化学氧化法在苯胺聚合过程中分别加入钴(Co)为Co2+而阴离子基团为(C2H3O2)22-、Cl22-、(NO3)22-、SO42-及C2O42-的乙酸钴、氯化钴、硝酸钴、硫酸钴、草酸钴等钴盐,合成出不同聚苯胺-钴(PANI-Co)配位聚合物。然后将PANI-Co聚合物作为前驱体在N2气氛中900℃热处理,制备出氮掺杂的Co-N-C碳基催化剂。采用SEM、XRD、XPS、Raman等手段分析Co-N-C催化剂的形貌、结构、化学组成及化学价态,并采用电化学方法测试了Co-N-C催化剂的电催化活性。结果表明,Co盐的阴离子基团对Co-N-C催化剂的形貌影响不大,但对Co-N-C催化剂中表面化学组成及含量、碳结构、石墨化程度以及Co的价态影响较大,并且Co盐的阴离子基团会影响Co-N-C催化剂的电催化活性,其氧还原(ORR)活性按照(C2H3O2)22->Cl22->(NO3)22->SO42->C2O42-顺序降低。含(C2H3O2)22-和Cl22-阴离子的钴盐制备的Co-N-C催化剂具有较高的ORR活性,这可能源于其较高含量的石墨氮和吡啶氮。
        During the process of the aniline polymerization,bivalent cobalt salt with different anionic groups such as(C2 H3 O2)22-,Cl22-,(NO3)22-,SO42-and C2 O42-were added into the solution and then different polyaniline cobalt(PANI-Co)coordination polymer were obtained.Finally,Co-N-C catalysts were prepared through pyrolysis of PANI-Co coordination polymer.The morphology,structure,chemical composition and chemical valence of the Co-N-C catalysts were characterized by scanning electron microscopy(SEM),X-ray spectroscopy(XRD),X-ray photoelectron spectroscopy(XPS)and Raman spectra(Raman).The electrocatalytic activity of Co-N-C catalysts were tested by electrochemical method.The results showed that the cobalt salt anionic groups had little impact on the morphology of Co-N-C catalysts,but had a great influence on the composition and surface chemistry of Co-N-C catalysts,carbon structure,degree of graphitization and the valence of Co.The cobalt salt anionic groups could affect the electrocatalytic activity of Co-N-C catalysts.The catalytic activities decreased as(C2 H3 O2)22->Cl22->(NO3)22->SO42->C2 O42-.The Co-N-C catalysts prepared by cobalt salt containing(C2 H3 O2)22-and Cl22-anions had higher ORR activity,which possibly due to the higher content of graphite nitrogen and pyridine nitrogen.
引文
1 Choi S I,Shao M,Lu N,et al.Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction[J].ACS Nano,2016,8(10):126.
    2 Wu Z,Lv Y,Xia Y,et al.Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active,stable,and methanol-tolerant oxygen reduction electrocatalyst[J].Journal of the American Chemical Society,2012,134(4):2236.
    3 Bing L,Higgins D C,Xiao Q,et al.The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5kW PEMFC stack[J].Applied Catalysis B:Environmental,2015,162:133.
    4 Ohyagi S,Sasaki T.Durability of a PEMFC Pt-Co cathode catalyst layer during voltage cycling tests under supersaturated humidity conditions[J].Electrochimica Acta,2013,102(102):336.
    5 Ma Y,Wang R,Wang H,et al.Evolution of nanoscale amorphous,crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction[J].Physical Chemistry Chemical Physics,2014,16(8):3593.
    6 Ding W,Li L,Xiong K,et al.Shape fixing via salt recrystallization:A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction[J].Journal of the American Chemical Society,2015,137(16):5414.
    7 Proietti E,Jaouen F,Lefèvre M,et al.Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J].Nature Communications,2011,2:416.
    8 Jin H,Zhang H,Zhong H,et al.Nitrogen-doped carbon xerogel:A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane(PEM)fuel cells[J].Energy&Environmental Science,2011,4(9):3389.
    9 Deng D,Yu L,Chen X,et al.Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J].Angewandte Chemie International Edition,2013,52(1):371.
    10 Hu Y,Jensen J O,Zhang W,et al.Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J].Angewandte Chemie International Edition,2014,53(14):3675.
    11 Elumeeva K,Ren J,Antonietti M,et al.High surface iron/cobaltcontaining nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction[J].ChemElectroChem,2015,2(4):584.
    12 Wang Y,Nie Y,Wei Z D.Unification of catalytic oxygen reduction and hydrogen evolution reactions:Highly dispersive Co nanoparticles encapsulated inside Co and nitrogen co-doped carbon[J].Chemical Communications,2015,51(43):8942.
    13 Yang R,Stevens K,Dahn J R.Investigation of activity of sputtered transition-metal(TM)-C-N(TM=V,Cr,Mn,Co,Ni)catalysts for oxygen reduction reaction[J].Journal of the Electrochemical Society,2008,155(1):B79.
    14 Zhang H J,Jiang Q Z,Sun L,et al.3Dnon-precious metal-based electrocatalysts for the oxygen reduction reaction in acid media[J].International Journal of Hydrogen Energy,2010,35(15):8295.
    15 Lefèvre M,Proietti E,Jaouen F,et al.Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J].Science,2009,324:71.
    16 Peng H,Hou S,Dang D,et al.Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine[J].Applied Catalysis B:Environmental,2014,158:60.
    17 Wu G,Johnston C M,Mack N H,et al.Synthesis-structureperformance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells[J].Journal of Materials Chemistry,2011,21:11392.
    18 Wu G,More K L,Johnston C M,et al.High-performance electrocatalysts for oxygen reduction derived from polyaniline,iron,and cobalt[J].Science,2011,332:443.
    19 殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社,2001.
    20 Lin Senhao,Song Tingwen,Wan Honghe,et al.Ion beam effects in polyaniline films[J].Acta Polymerica Sinica,1994(1):48(in Chinese).林森浩,荣廷文,万洪和,等.聚苯胺薄膜的离子束效应[J].高分子学报,1994(1):48.
    21 Lu Min.Properties and applications of polyaniline[J].Journal of Functional Materials,1998(4):353(in Chinese).陆珉.导电聚苯胺(PAn)的特性及应用[J].功能材料,1998(4):353.
    22 Wang G,Jiang K,Xu M,et al.A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer[J].Journal of Power Sources,2014,266(10):222.
    23 Faubert G,C8téR,Guay D,et al.Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells[J].Electrochimica Acta,1998,43(14-15):1969.
    24 Casanovas J,Ricart J M,Rubio J,et al.Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials[J].Journal of the American Chemical Society,1996,118(34):8071.
    25 Wagner C D,Riggs W W,Davis L E,et al.Handbook of X-ray photoelectron spectroscopy[M].USA:Perkin-Elmer corporation Physical Electronics Division,1979:219.
    26 Cochet M,Maser W K,Benito AM,et al.Synthesis of a new polyaniline/nanotube composite:“In-situ”polymerisation and charge transfer through site-selective interaction[J].Chemical Communications,2001,16:1450.
    27 Tuinstra F,Koenig J L.Raman spectrum of graphite[J].The Journal of Chemical Physics,1970,53(3):1126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700