铝及铝合金无铬钝化研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in Chromium-free Passivaton of Aluminium and Aluminium Alloy
  • 作者:崔珊 ; 安成强 ; 郝建军
  • 英文作者:CUI Shan;AN Cheng-qiang;HAO Jian-jun;School of Environmental and Chemical Engineering,Shenyang Ligong University;
  • 关键词:铝及铝合金 ; 无铬钝化 ; 耐腐蚀性 ; 硅烷 ; 复合膜
  • 英文关键词:aluminium and aluminium alloy;;chromium-free passivation;;corrosion resistance;;silane;;composite film
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:沈阳理工大学环境与化学工程学院;
  • 出版日期:2016-06-20
  • 出版单位:表面技术
  • 年:2016
  • 期:v.45
  • 语种:中文;
  • 页:BMJS201606010
  • 页数:7
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:70-76
摘要
铝合金可加工成各种板材、型材、铝铸件,为了减少其在工业环境中的腐蚀损失,需进行钝化处理。钝化常作为涂层的预处理步骤,钝化膜能增强铝合金表面与有机涂层的结合力,进一步提高涂层对基体的防护能力。目前无铬钝化主要是钼酸盐钝化、稀土盐钝化、锆/钛盐钝化及有机物钝化,因此对这几种主要化学钝化法的研究进程及现状进行了综述。钼酸盐复配其他盐协同缓蚀,能够获得更强的耐腐蚀性能。稀土盐中加入强氧化剂和成膜促进剂,可以简化处理工艺,降低腐蚀电流。锆、钛盐中加入有机物形成复合膜,能够改善单一膜层的耐腐蚀性能,提高与基体的结合力。硅烷在铝合金表面形成交联结构,从而表现出良好的封闭效果。在硅烷中加入纳米粒子可以获得更好的膜层表面形貌,加入稀土及其氧化物可提高耐腐蚀性能。硅烷两步法成膜过程中,成膜次序不同能够获得不同的膜层物理性能和耐蚀效果。最后,对未来无铬钝化工艺的研究方向进行了展望。
        Aluminum alloy can be processed into a variety of sheets, profiles and aluminum casting. Passivation of aluminum alloy is required in order to reduce its corrosion damage in the industrial environment. Passivation is often used as a coating pretreatment step and the passivate film can enhance the adhesion strength between the aluminum alloy surface and the organic coating, further improving the protection ability of coating. At present, chromium-free passivation mainly includes molybdate passivation, rare earth salt passivation, zirconium/titanium salt passivation and organic passivation. In this paper, the research process and current situation of these main chemical passivation methods were summarized. Compounding of molybdate with other salts results in enhanced inhibition of corrosion leading to stronger corrosion resistance. Addition of strong oxidizer and film-forming promoter into rare earth salts can simplify the process and reduce the corrosion current. Adding organic matter to Zirconium and titanium salts to form composite films can improve the corrosion resistance of the single film layer and can improve the binding force with the matrix. Silane forms a crosslinking structure on the aluminum alloy surface, and showed a good sealing effect. Adding nanoparticles into silane can obtain better film surface morphology, whereas adding rare earth and its oxides can improve the corrosion resistance. Altering the film forming order in the silane two-step film-forming process can get different membrane layer physical properties and corrosion resistance. Finally, the future research direction of chromium-free passivation technology was prospected.
引文
[1]尚守研.铝合金预处理及无铬化学转化膜制备工艺研究[D].秦皇岛:燕山大学,2015.SHANG Shou-yan.Aluminum Alloy Pretreatment and Characterization of Chrome-free Conversion Coatings on Ally Aluminum[D].Qinhuangdao:Yanshan University,2015.
    [2]朱祖芳.铝材表面处理技术发展回顾与展望[J].有色金属加工,2002,31(2):4—9.ZHU Zu-fang.Retrospect and Prospect of Surface Treatment Technology Development of Aluminum Products[J].Nonferrous Metals Processing,2002,31(2):4—9.
    [3]史金重,刘立建,冯双生.汽车用铝合金材料涂装性能研究[J].涂装工业,2015,45(5):68.SHI Jin-zhong,LIU Li-jian,FENG Shuang-sheng.Research on Coating Performance of Aluminum Alloy for Automotive[J].Paint&Coating Industry,2015,45(5):68.
    [4]杨显芳,梁天权,韦唯,等.环保型铝合金表面转化处理的研究进展[J].材料导报,2014,28(2):439.YANG Xian-fang,LIANG Tian-quan,WEI Wei,et al.Progress of Environment-friendly Chemical Surface Treatment of Aluminum Alloys[J].Materials Review,2014,28(2):439.
    [5]纪红,朱祖芳.铝及铝合金无铬表面处理技术研究进展[J].电镀与涂饰,2009,28(6):34—36.JI Hong,ZHU Zu-fang.Research Progress of Chromate-free Surface Treatment Technology on Aluminum and Its Alloys[J].Electroplating&Finishing,2009,28(6):34—36.
    [6]秦振华,李红玲.铝及铝合金无铬化学转化膜工艺的研究进展[J].腐蚀科学与防护技术,2014,26(3):269—271.QIN Zhen-hua,LI Hong-ling.Research Progress of Chromate-free Chemical Conversion Coating Technology on Aluminum and Aluminum Alloy[J].Corrosion Science and Protection Technology,2014,26(3):269—271.
    [7]孙凤仙,颜广炅,姚伟,等.铝合金非六价铬化学转化处理工艺的研究进展[J].电镀与涂饰,2014,33(3):125.SUN Feng-xian,YAN Guang-jiong,YAO Wei,et al.Research Progress of Non-hexavalent Chromium Chemical Conversion Treatment of Aluminum Alloys[J].Electroplating&Finishing,2014,33(3):125.
    [8]张志刚,郭帝,周华锋,等.钼酸盐应用于有色金属缓蚀的研究进展[J].材料保护,2015,48(4):40—43.ZHANG Zhi-gang,GUO Di,ZHOU Hua-feng,et al.Research Progress of Molybdate-based Inhibitors Used for Nonferrous Metals[J].Materials Protection,2015,48(4):40—43.
    [9]LI X H,DENG S D,FU H.Sodium Molybdate as a Corrosion Inhibitor for Aluminium in H3PO4 Solution[J].Corrosion Science,2011,53(9):2748—2753.
    [10]WILCOX G D,GABE D R,WARWCIK M E.The Development of Passivation Coatings by Cathodic Reduction in Sodium Molybdate Solutions[J].Corrosion Science,1988,28(6):577—587.
    [11]王成,江峰,林海潮.LY12铝合金钼酸盐转化膜研究[J].稀有金属材料与工程,2003,32(2):132.WANG Cheng,JIANG Feng,LIN Hai-chao.The Molyb-date Conversion Coatings on LY12 Aluminum Alloy[J].Rare Metal Materials and Engineering,2003,32(2):132.
    [12]徐临超,陈贤杭,李勇.7075铝合金表面钼酸盐钝化工艺[J].浙江工贸职业技术学院学报,2015,15(2):50—52.XU Lin-chao,CHEN Xian-hang,LI Yong.Passivation of7075 Aluminum Alloy by Molybdate[J].Journal of Zhejiang Industry&Trade Vocational College,2015,15(2):50—52.
    [13]ZHANG D Q,JIN X,XIE B,et al.Corrosion Inhibition of Ammonium Molybdate for AA6061 Alloy in Na Cl Solution and Its Synergistic Effect with Calcium Gluconate[J].Surface&Interface Analysis,2012,44(1):78—83.
    [14]唐鋆磊,唐聿明,左禹.稀土转化膜钼酸盐后处理工艺研究[J].材料保护,2006,39(11):27—28.TANG Jun-lei,TANG Yu-ming,ZUO Yu.Effect of Post-treatment by Molybdenate on Corrosion Resistance of Cerium-based Chemical Conversion Film on Aluminum Alloy[J].Materials Protection,2006,39(11):27—28.
    [15]胡博.7075型铝合金在碱性Na Cl介质中的腐蚀行为及稀土钝化缓蚀作用[D].西宁:青海师范大学,2014.HU Bo.The Corrosion Inhibition of Rare Passivation and the Corrosion Behavior of 7075 Aluminum Alloy in Alkaline Solution with Na Cl[D].Xining:Qinghai Normal University,2014.
    [16]王会阳,安云岐,李承宇,等.稀土在铝和铝合金中应用的研究及进展[J].稀土,2012,33(1):74—79.WANG Hui-yang,AN Yun-qi,LI Cheng-yu,et al.The Research Progress of Rare Earth Application in Aluminum and Aluminum Alloys[J].Chinese Rare Earths,2012,33(1):74—79.
    [17]李红玲,刘清玲.6061铝合金表面无铬稀土镧转化膜性能的研究[J].表面技术,2013,42(3):42—55.LI Hong-ling,LIU Qing-Ling.Research on Performance of Chrome-free Rare Earth Lanthanum Conversion Coating on 6061 Aluminum Alloy Surface[J].Surface Technology,2013,42(3):42—55.
    [18]顾宝珊,杨培燕.B95铝合金在铈盐溶液中形成转化膜的电极反应机理[J].中国有色金属学报,2013,23(12):3391.GU Bao-shan,YANG Pei-yan.Electrode Reaction Mechanism of Conversion Coating Forming Process of B95Aluminium Alloy in Cerium(Ⅲ)Salt Solution[J].The Chinese Journal of Nonferrous Metals,2013,23(12):3391.
    [19]王春霞,周雅,曹经倩,等.铝合金稀土盐钝化工艺研究[J].电镀与精饰,2010,32(10):32—33.WANG Chun-xia,ZHOU Ya,CAO Jing-qian,et al.Investigation on Rare Earth Salt Passivation Technology for Aluminum Alloy[J].Plating and Finishing,2010,32(10):32—33.
    [20]刘毅.铝基镧转化膜制备与耐蚀性能研究[D].青岛:中国海洋大学,2013:16-49.LIU Yi.Study on Preparation and Corrosion Resistance of Lanthanum Conversion Coating on Aluminum[D].Qingdao:Ocean University of China,2013:16—49.
    [21]邹洪庆.铸铝合金锆系非铬化学成膜处理工艺应用[J].材料保护,2001,34(2):29—30.ZOU Hong-qing.Non-chromate Zr Series Chemical Converting Coating of Cast Aluminum Alloy[J].Materials Protection,2001,34(2):29—30.
    [22]罗坤英,余国强,李大旭.环保型铝及铝合金表面化学转化工艺及性能研究[J].材料保护,2006,39(10):74—75.LUO Kun-ying,YU Guo-qiang,LI Da-xu.Environmentally Acceptable Chemical Conversion Film for Aluminum and Its Alloys[J].Materials Protection,2006,39(10):74—75.
    [23]WENDEL T,BITTNER K,WIETZORECK H.Pretreatment of Aluminum Surfaces with Chrome-free Solutions:US,6562148[P].2003-05-13.
    [24]WERNICK S,PINNER R.The Surface Treatment and Finishing of Aluminium and Its Alloys[M].England:ASM International,2001.
    [25]吕勇武,熊金平,沈磊,等.铝合金表面无铬化学转化膜工艺研究[J].电镀与涂饰,2007,26(12):25—28.LV Yong-wu,XIONG Jin-ping,SHEN Lei,et al.Process of Chrome-free Chemical Conversion Film on Aluminum Alloys[J].Electroplating&Finishing,2007,26(12):25-28.
    [26]安成强,王双红,赵时璐,等.铝合金表面氧化锆转化膜的结构与性能[J].电镀与精饰,2012,34(6):2—4.AN Cheng-qiang,WANG Shuang-hong,ZHAO Shi-lu,et al.Structure and Performance of Zirconia Conversion Film on AA6061 Aluminum Alloy[J].Plating and Finishing,2012,34(6):2—4.
    [27]刘浩威.6063铝合金钛锆系钝化液稳定性研究[D].广州:华南理工大学,2014:19—55.LIU Hao-wei.Research on the Stability and Optimization of Passivation Process of Ti-Zr System Passivation Solution on 6063 Aluminum Alloy[D].Guangzhou:South China University of Technology,2014:19—55.
    [28]王双红.铝合金表面钛、锆-有机酸盐复合膜的制备与性能[D].沈阳:东北大学,2009.WANG Shuang-hong.The Preparation and Performance of Titanate-Zirconate Organophosphonate Hybrid Films on Aluminum Alloy[D].Shenyang:Northeastern University,2009.
    [29]王娇,郭瑞光.2024铝合金表面钒锆复合转化膜的制备及其性能[J].材料保护,2014,47(3):1—4.WANG Jiao,GUO Rui-guang.Prepartion of Vanadium/Zirconium Composite Conversion Coating on 2024 Aluminum Alloy Surface and Evaluation of Corrosion Resistance of the Coating[J].Materials Protection,2014,47(3):1—4.
    [30]ZHU D Q,OOIJ W J V.Corrosion Protection of Metals by Water-based Silane Mixtures of Bis-[trimethoxysilylpropyl]amine and Vinyltriacetoxysilane[J].Progress in Organic Coatings,2004,49(1):42—53.
    [31]胡会利,程瑾宁,李宁,等.植酸在金属防护中的应用现状及展望[J].材料保护,2005,38(12):39—41.HU Hui-li,CHENG Jin-ning,LI Ning,et al.Current State and Prospect of the Application of Phytic Acid in Metal Protection[J].Materials Protection,2005,38(12):39—41.
    [32]刘泓,沈月敏.植酸在金属防腐中的应用研究[J].应用化工,2009,38(11):1701—1702.LIU Hong,SHEN Yue-min.Application of Non-toxic Phytic Acid in Metal Protection[J].Applied Chemical Industry,2009,38(11):1701—1702.
    [33]黄晓梅,张栓,朱俊生.镁-锂-铝合金稀土-植酸转化膜的研究[J].电镀与环保,2012,32(1):39—42.HUANG Xiao-mei,ZHANG Shuan,ZHU Jun-sheng.A Study of Re-Phytic Acid Conversion Coating on Mg-Li-Al Alloy[J].Electroplating&Pollution Control,2012,32(1):39—42.
    [34]SHIMAKURA,TOSHIAKI,SASAKI,et al.Non-chromate Metallic Surface-treating Agent,Method for Surface Treatment,and Treated Steel Material:US,6475300[P].2002-11-05.
    [35]陈泽民,高梦颖,杨红贤,等.铝合金无铬化学转化膜工艺研究[J].电镀与涂饰,2015,34(7):391—395.CHEN Ze-min,GAO Meng-ying,YANG Hong-xian,et al.Study on Chrome-free Chemical Conversion Coating Process for Aluminum Alloy[J].Electroplating&Finishing,2015,34(7):391—395.
    [36]易爱华.铝合金表面钛/锆转化膜的着色及性能优化[D].广州:华南理工大学,2012.YI Ai-hua.The Coloration and Performance Optimization of Ti/Zr Conversion Coating on Aluminum Alloy[D].Guangzhou:South China University of Technology,2012.
    [37]董萍.硅烷偶联剂在金属表面处理中的应用研究[D].武汉:华中师范大学,2014.DONG Ping.Application of Silane Coupling Agent in the Metal Surface Treatment[D].Wuhan:Central China Normal University,2014.
    [38]汪亮.铝合金表面硅烷膜的制备工艺及性能研究[D].合肥:合肥工业大学,2012.WANG Liang.Research Progress and Performance of Silane Films on Aluminum Alloys[D].Hefei:Hefei University of Technology,2012.
    [39]徐冰倩.铝表面稀土硅烷复合膜的制备工艺和性能研究[D].青岛:中国海洋大学,2014.XU Bing-qian.Preparation and Characterization of Cerium-Silane Composite Coating on Aluminium[D].Qingdao:Ocean University of China,2014.
    [40]MONTEMOR M F,FEFFERIA M G S.Cerium Salt Activated Nanoparticles as Fillers for Silanefilms:Evaluation of the Corrosion Inhibition Performance on Galvanised Steel Substrates[J].Electrochimica Acta,2007,52(24):6976—6987.
    [41]苏红来,尤宏,姚杰,等.LY12铝合金表面有机-无机杂化膜特性研究[J].材料科学与工艺,2006,14(4):349—352,357.SU Hong-lai,YOU Hong,YAO Jie,et al.Study on Properties of Organic-inorganic Hybrid Coatings on LY12 Aluminum Alloy[J].Materials Science&Technology,2006,14(4):349—352,357.
    [42]BRUSCIOTTI F,BATAN A,GRAEVE I D,et al.Characterization of Thin Water-based Silane Pre-treatments on Aluminium with the Incorporation of Nano-dispersed Ce O2Particles[J].Surface&Coatings Technology,2010,205(2):603—613.
    [43]李美.纳米粒子掺杂硅烷薄膜的电化学辅助沉积及其防护性能[D].杭州:浙江大学,2010.LI Mei.Electro-assist Deposition of Nanoparticles-incorporated Silane Films and Their Corrosion Performance[D].Hangzhou:Zhejiang University,2010.
    [44]左轲.铝表面稀土-硅烷复合膜的制备及性能研究[D].青岛:中国海洋大学,2013.ZUO Ke.Preparation and Characterization of Cerium-Silane Composite Coating on Aluminium[D].Qingdao:Ocean University of China,2013.
    [45]CABRAL A M,TRABELSI W,SERRA R,et al.The Corrosion Resistance of Hot Dip Galvanised Steel and AA2024-T3 Pre-treated with Bis-[triethoxysilylpropyl]Tetrasulfide Solutions Doped with Ce(NO3)3[J].Corrosion Science,2006,48(11):3740—3758.
    [46]PALANIVEL V,HUANG Y,OOIJ W J V.Effects of Addition Corrosion Inhibitors to Silane Films on the Performance of AA2024-T3 in a 0.5M Na Cl Solution[J].Progress in Organic Coatings,2005,53(2):153—168.
    [47]Palomino L M,SUEGAMA P H,AOKI I V,et al.Electrochemical Study of Modified Cerium-silane Bi-layer on Al Alloy 2024-T3[J].Corrosion Science,2009,51(6):1238—1250.
    [48]雷越.6061铝合金上硅烷膜的制备与稀土元素改性[D].新乡:河南师范大学,2014.LEI Yue.Research Progress and Rare-earth Modified Silane Silm on 6061 Aluminum Alloy[D].Xinxiang:Henan Normal University,2014.
    [49]谢荟.铝表面硅烷膜制备工艺优化及膜层性能研究[D].长沙:湖南大学,2010.XIE Hui.Study on Optimum Preparation Process and Performance of Silane Films on Aluminum[D].Changsha:Hunan University,2010.
    [50]郝敬丽,高永晶,董泽华.硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J].中国腐蚀与防护学报,2015,35(6):525—532.HAO Jing-li,GAO Yong-jing,DONG Ze-hua.Effects of Siloxane Sulfide and Cerium Salt Complex Conversion Film on Corrosion Resistance of Aluminum Alloy[J].Journal of Chinese Society for Corrosion and Protection,2015,35(6):525—532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700