地浸采铀水岩作用数值模拟研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of Numerical Simulation for Water-Rock Interaction of In-situ Uranium Leaching
  • 作者:袁新 ; 周义朋
  • 英文作者:YUAN Xin;ZHOU Yi-peng;State Key Laboratory of Nuclear Resources and Environment,East China University of Technology;
  • 关键词:砂岩型铀矿 ; 原地浸出 ; 水岩作用 ; 数值模拟
  • 英文关键词:sandstone-type uranium;;in-situ leaching;;water-rock interaction;;numerical simulation
  • 中文刊名:METE
  • 英文刊名:Nonferrous Metals(Extractive Metallurgy)
  • 机构:东华理工大学核资源与环境省部共建国家重点实验室;
  • 出版日期:2019-01-12
  • 出版单位:有色金属(冶炼部分)
  • 年:2019
  • 基金:国家自然科学基金资助项目(41572231);; 国家重点基础研究发展计划(973)项目(2015CB453002);; 江西省科技计划项目(20142BFB29004,20151BBB60093)
  • 语种:中文;
  • 页:METE201901012
  • 页数:6
  • CN:01
  • ISSN:11-1841/TF
  • 分类号:58-63
摘要
砂岩型铀矿原地浸出已成为国内外铀资源开发的主要方式之一,在对地浸复杂水岩作用过程的研究中,数值模拟作为重要方法,被越来越广泛应用。详细介绍了数值模拟技术在地浸采铀的应用、成果及进展,并对存在的主要问题和地浸数值模拟研究的发展方向进行了分析。
        In-situ leaching(ISL)technology is one of the main methods for uranium exploitation in the world.As an effective and economic tool,numerical simulation is widely used as an important method in study of complex water-rock reaction processes in in-situ leaching system.Application,achievements and progress of numerical simulation technology in uranium ISL are summarized. Main problems and development direction of numerical simulation of uranium ISL are analyzed.
引文
[1]张飞凤,苏学斌,邢拥国,等.地浸采铀新工艺综述[C]//全国采矿学术会议暨矿山技术设备展示会.昆明,2012:9-12.
    [2]OECD/NEA-IAEA.Uranium 2016:Resources,Production and Demand[M].Vienna:IAEA,2017.
    [3]MCDONALD M G,HARBAUGH A W.A modular threedimensional finite-difference ground-water flow model[M]//Techniques of Water-Resources Investigations of the United States Geological Survey.1988:387-389.
    [4]ZHENG C,WANG P P.MT3DMS:A modular threedimensional multispecies transport model for simulation of advection,dispersion,and chemical reactions of contaminants in groundwater systems;Documentation and user's guide[J].Ajr American Journal of Roentgenology,1999,169(4):1196-1197.
    [5]徐乐昌.地下水模拟常用软件介绍[J].铀矿冶,2002,21(1):33-38.
    [6]贺国平,邵景力,崔亚莉,等.FEFLOW在地下水流模拟方面的应用[J].成都理工大学学报(自然科学版),2003,30(4):356-361.
    [7]田亮.地下水数值模拟技术发展现状[J].科技与企业,2012(17):117-117.
    [8]HOSSEIN BANEJAD,HAMID MOHEBZADEH,MOHAMMAD HOSSEIN GHOBAD,et al.Numerical simulation of groundwater flow and contamination transport in Nahavand Plain Aquifer,West of Iran[J].Journal Geological Society Of India,2014,83(1):83-92.
    [9]CHEN C S,TU C H,CHEN S J,et al.Simulation of groundwater contaminant transport at a decommissioned landfill site-A case study,Tainan City,Taiwan[J].Int JEnviron Res Public Health,2016,13(5):467.
    [10]ZHOU Y,JIANG Y,AN D,et al.Simulation on forecast and control for groundwater contamination of hazardous waste landfill[J].Environmental Earth Sciences,2014,72(10):4097-4104.
    [11]LIU Y J,CAO H,AN Q,et al.IGW groundwater numerical simulation software in power plant prediction of groundwater contamination[J].Advanced Materials Research,2014,955-959:3225-3230.
    [12]PRAVEENA S M,ABDULLAH M H,ARIS A Z,et al.Numerical simulation of seawater intrusion in Manukan Island,East Malaysia[J].Journal of Modelling in Management,2011,6(3):317-333.
    [13]WERNER A D.On the classification of seawater intrusion[J].Journal of Hydrology,2017,551:619-631.
    [14]张胜伟,陈梦源,李哲,等.仙桃市应急水源地地下水流数值模拟分析[J].资源环境与工程,2017(6):735-739.
    [15]齐欢,秦品瑞,耿付强,等.GMS在白泉湿地公园地下水数值模拟中的应用[J].山东国土资源,2017,33(9):55-61.
    [16]王晓玮,邵景力,甘雨.基于数值模拟的西北地下水总量控制指标确定研究[J].水文地质工程地质,2017,44(3):12-18.
    [17]陈鲁,王艳伟,刘娟,等.基于GMS的吐鲁番盆地地下水资源量模拟预测[J].干旱区研究,2017,34(4):727-732.
    [18]郭达鹏,康凤新,陈奂良,等.山东淄博沣水泉域岩溶水系统模拟及水源地优化开采预测[J].中国岩溶,2017,36(3):327-338.
    [19]薛禹群.中国地下水数值模拟的现状与展望[J].高校地质学报,2010,16(1):1-6.
    [20]吕俊文,周星火,蔡萍莉,等.某铀矿地浸采区的水动力场三维模拟[J].铀矿冶,2003,22(4):188-192.
    [21]马尧.地球化学模式PHREEQC在地浸工艺中的应用[J].铀矿冶,2007,26(2):67-71.
    [22]高柏,邢拥国,张文,等.淡化地下水对缓解某矿床地浸化学堵塞的探讨[J].铀矿冶,2010,29(2):61-65.
    [23]张勇,周义朋,张青林,等.蒙其古尔矿床微酸地浸采铀碳酸钙饱和状态研究[J].有色金属(冶炼部分),2014(12):24-27.
    [24]吉宏斌,周义朋,孙占学,等.蒙其古尔铀矿床CO2+O2地浸浸出过程分析与探讨[J].有色金属(冶炼部分),2018(3):55-59.
    [25]陶峰,孙占学,史维浚.PHREEQCI 2.8在溶浸剂配制中的应用[J].铀矿冶,2007,26(1):15-18.
    [26]赵春虎,李国敏,雷奇峰,等.某可地浸砂岩型铀矿区地下水水流三维数值模拟[J].铀矿地质,2008,24(7):228-232.
    [27]周义朋,沈照理,孙占学,等.应用粒子示踪模拟技术确定地浸采铀溶浸范围[J].中国矿业,2015(2):117-120.
    [28]王西文.确定地浸钻孔最佳间距的原则和方法[J].铀矿冶,1999,18(2):14-26.
    [29]史维浚,高柏,王国华.砂岩型铀矿地浸过程中的溶质迁移机理[J].东华理工大学学报(自然科学版),2004,27(1):24-32.
    [30]谭凯旋,王清良,胡鄂明,等.原地溶浸开采中的多过程耦合作用与反应前锋运动:2.数值模拟[J].铀矿冶,2005,24(2):57-61.
    [31]张建华,朱新铖,史骥.某原地浸出铀矿井型及井距优化数值模拟[J].金属矿山,2017(3):25-30.
    [32]利广杰,王海峰,张勇,等.基于Visual MODFLOW的地下水数值模拟在地浸采铀中的应用[J].铀矿冶,2011,30(1):1-5.
    [33]周义朋,沈照理,孙占学,等.地浸采铀抽注平衡关系对溶浸液流失与地下水流入的影响[J].有色金属(矿山部分),2013,65(4):1-4.
    [34]谢廷婷,王晓东,谭亚辉,等.帷幕注水地浸采铀三维地下水流数值模拟[J].铀矿冶,2015,34(2):91-96.
    [35]张勇,马连春,张渤,等.低渗透性铀矿床浸出过程对地下水环境影响的探讨[J].铀矿冶,2017,36(6):75-86.
    [36]吉宏斌,黄群英,周义朋,等.抽注流量分配及抽注比对地浸溶液扩散的影响[J].铀矿冶,2017,36(3):172-181.
    [37]黄群英,周义朋,刘科,等.某砂铀矿地浸单元酸浸初期溶质运移与溶液渗流关系[J].有色金属(冶炼部分),2017(6):24-27.
    [38]赵贺永.某铀矿原地浸出的GMS模拟研究[J].西安文理学院学报(自然科学版),2015,18(2):88-91.
    [39]赵贺永,肖月华.某铀矿原地浸出U离子的GMS模拟研究[J].攀枝花学院学报,2015(2):22-24.
    [40]吕俊文,史文革,杨勇.某地浸采铀井场地下水抽出处理修复的数值模拟[J].南华大学学报(自然科学版),2006,20(4):59-64.
    [41]LIDDELL K C,BAUTISTA R G.Simulation of in situ,uraninite leaching-part III:The effects of solution concentration[J].Metallurgical&Materials Transactions B,1995,26(4):695-701.
    [42]JOHNSON R H,TUTU H.Predictive reactive transport modeling at a proposed uranium in situ recovery site with a general data collection guide[J].Mine Water&the Environment,2015,35(3):1-12.
    [43]CURTIS G P,DAVIS J A,NAFTZ D L.Simulation of reactive transport of uranium(VI)in groundwater with variable chemical conditions[J].Water Resources Research,2006,42(4):336-336.
    [44]SIMON R B,THIRY M,SCHMITT J M,et al.Kinetic reactive transport modelling of column tests for uranium In Situ,Recovery(ISR)mining[J].Applied Geochemistry,2014,51:116-129.
    [45]高柏,史维浚,孙占学.PHREEQC在研究地浸溶质迁移过程中的应用[J].东华理工大学学报(自然科学版),2002,25(2):132-135
    [46]UMANSKII A B,КLYUSHNIKOV A M.Development of SO2-O2,system as an oxidant at uranium leaching processes[J].Journal of Radioanalytical and Nuclear Chemistry,2012,292(2):885-888.
    [47]JOHNSON R H,TRUAX R A,LANKFORD D A,et al.Sorption Testing and Generalized Composite Surface Complexation Models for Determining Uranium Sorption Parameters at a Proposed In-situ Recovery Site[J].Mine Water&the Environment,2016,35(4):1-12.
    [48]LI C G,TAN K X,LIU Z Z,et al.Prediction model of uranium concentration for in-situ leaching pregnant solution based on uranium chemical fractions of ores[J].Journal of Radioanalytical and Nuclear Chemistry,2018,https://doi.org/10.1007/s10967-018-6190-9.
    [49]RASHIDI A,SAFDARI J,ROOSTA-AZAD R,et al.Modeling of uranium bioleaching by Acidithiobacillus ferrooxidans[J].Annals of Nuclear Energy,2012,43(6):13-18.
    [50]曾晟,谭凯旋,桑潇,等.原地浸出采铀多场多过程耦合动力学数值模拟[J].原子能科学技术,2011,45(4):500-505.
    [51]SAUNDERS J A,PIVETZ B E,VOORHIES N,et al.Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery(ISR)sites[J].Journal of Environmental Management,2016,183:67-83.
    [52]赵春虎,李国敏,雷奇峰,等.数值模拟技术在地浸采铀矿山中的应用[J].工程勘察,2008(7):27-31.
    [53]李春光,谭凯旋.地浸采铀地下水中放射性污染物迁移的模拟[J].南华大学学报(自然科学版),2011,25(3):25-30.
    [54]牛洁,张学礼,NIU J,等.捷克Straz地浸铀矿山地下水恢复治理介绍[J].铀矿冶,2016,35(2):110-117.
    [55]田亮,叶阳,张锋.某矿山地浸试验流场SO2-4的运移模拟[J].地下水,2014(5):61-62.
    [56]何智,胡凯光,王国全,等.基于GMS的某铀矿地下水中铀迁移模拟[J].核电子学与探测技术,2015,35(11):1106-1111.
    [57]BAIN J G,MAYER K U,BLOWES D W,et al.Modelling the closure-related geochemical evolution of groundwater at a former uranium mine[J].Journal of Contaminant Hydrology,2001,52(1):109-135.
    [58]ROSHAL A,DAN K.Simulation of propagation of leachate after the ISL mining closure[J].Uranium in the Environment,2006:217-224.
    [59]GOMEZ P,GARRALóN A,BUIL B,et al.Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine[J].Science of the Total Environment,2006,366(1):295-309.
    [60]WEN H,PAN Z,GIAMMAR D E,et al.Enhanced uranium immobilization by phosphate amendment under variable geochemical and flow conditions:Insights from reactive transport modeling[J].Environmental Science&Technology,2018,52(10):5841-5850.
    [61]JOHNSON R H,TUTU H.Reactive transport modeling at uranium in situ recovery sites:uncertainties in uranium sorption on iron hydroxides[J].Center for Integrated Data Analytics Wisconsin Science Center,2013:377-382.
    [62]HESHMATI H,TORABMOSTAEDI M,GILANI HG,et al.Kinetic,isotherm,and thermodynamic investigations of uranium(VI)adsorption on synthesized ion-exchange chelating resin and prediction with an artificial neural network[J].Desalination&Water Treatment,2015,55(4):1076-1087.
    [63]周义朋,沈照理,孙占学,等.某砂岩型铀矿地浸采铀试验溶浸液化学组分运移模拟[J].中国矿业,2012(增刊1):298-300.
    [64]李梦姣,连国玺,曹凤波,等.非均一抽注技术在地浸地下水环境保护中的应用[J].铀矿冶,2017,36(6):98-104.
    [65]胡凯光,张磊,何智,等.基于GMS某地浸铀矿地浸液中铀的吸附模拟[J].矿山工程,2017,5(3):23-31.
    [66]焦友军,施小清,吴吉春,等.基于PHT3D的地下水中六价铀吸附反应运移数值模拟[J].地下水,2015(2):8-10.
    [67]徐海珍,高艳丽,李国敏,等.地下水中酸性污染羽的自然净化作用数值模拟研究[J].工程地质学报,2013,21(6):926-931.
    [68]谭凯旋,周泉宇,吕俊文,等.地浸采铀矿区地下水中UO2+2和SO2-4迁移的数值模拟[J].矿物学报,2007,27(增刊1):394-395.
    [69]LIU P,ELSHALL A S,YE M,et al.Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods[J].Water Resources Research,2016,52(2):734-758.
    [70]ZENG X,WU J,WANG D,et al.Assessing Bayesian model averaging uncertainty of groundwater modeling based on information entropy method[J].Journal of Hydrology,2016,538:689-704.
    [71]ZENG X,WU J,WANG D,et al.Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion[J].Environmental Research,2015,148:586-594.
    [72]中国科学院.地下水科学[M].北京:科学出版社,2018:355-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700