柴北缘查查香卡铀-钍-铌-稀土矿床地质特征及矿床成因:一种与钠长岩相关的新矿化类型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geological characteristics and ore genesis of the Chachaxiangka U-Th-Nb-REE deposit in the northeastern Qaidam Basin:a new mineralization type related to albitite
  • 作者:钟军 ; 陈擎 ; 范洪海 ; 史长昊
  • 英文作者:ZHONG Jun;CHEN Qing;FAN Honghai;SHI Changhao;CNNC Key Laboratory of Uranium Resource Exploration and Evaluation Technology,Beijing Research Institute of Uranium Geology;No.203 Research Institute of Nuclear Industry;School of Earth Sciences and Resources,China University of Geosciences (Beijing);
  • 关键词:查查香卡矿床 ; 铀-钍-铌-稀土成矿系统 ; 钠长岩 ; 富集地幔熔融 ; 岩浆-热液成矿
  • 英文关键词:Chachaxiangka deposit;;U-Th-Nb-REE mineralization system;;albitite;;partial melting of meta-somatized mantle;;magmatic-hydrothermal mineralization
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:核工业北京地质研究院中核集团铀资源勘查与评价技术重点实验室;核工业203研究所;中国地质大学(北京)地球科学与资源学院;
  • 出版日期:2018-08-30 09:56
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.133
  • 基金:国家自然科学基金项目(41772082);; 中国地质调查局项目(12120114015201)
  • 语种:中文;
  • 页:DXQY201805017
  • 页数:15
  • CN:05
  • ISSN:11-3370/P
  • 分类号:228-242
摘要
青海查查香卡铀-钍-铌-稀土矿床位于柴达木盆地北缘的柴达木—阿尔金超高压变质杂岩带东端,是中国发现的首例与钠长细晶岩脉相关的铀-钍-铌-稀土多金属成矿系统。矿化主要分为两类:脉状矿化和微细浸染脉状矿化。脉状矿化即为钠长岩脉;微细浸染脉状矿化是以微细浸染细脉产于绿片岩围岩中的矿化类型。详细的矿物学工作研究表明查查香卡矿床可初步划分为岩浆、热液主成矿和成矿后3个阶段。岩浆阶段以发育"水滴状"铀-钍-铌矿物(晶质铀矿、铀钍矿、钍石、维铌钙矿等)包体为典型特征,产于最主要的造岩矿物钠长石中;热液主成矿阶段主要以稀土矿化为主,伴随铌和钍矿化作用,矿石矿物包括褐帘石、氟碳铈矿、钍石、含铌榍石(?)、锆石等,与磷灰石、方解石、绿泥石、石英等中低温脉石矿物普遍共生;成矿后阶段以广泛出现的方解石±石英网脉为特征。通过矿物学研究和主微量元素数据的综合分析,初步认为钠长岩脉为岩浆-热液成因,源于富含稀土和铌等成矿元素的富集地幔部分熔融岩浆的演化;岩浆成矿作用过程中可能经历了硅酸盐熔体与碳酸盐/磷酸盐熔/流体的分离作用,但本矿床更为重要的成矿元素富集机制为硅酸盐熔体与富氯岩浆热液流体的不混溶作用,后者引发本矿床大规模的稀土成矿作用,并活化和再富集了铌和钍。钠长岩脉特征的红色形貌特征可作为此类矿床一个重要的野外找矿特征,根据类似成矿系统的成矿模式,认为矿床深部及外围隐伏区仍有较大的成矿潜力。
        The Chachaxiangka deposit in Qinghai Province is located in the eastern segment of the QaidamAltun UHPM complex in the northeastern Qaidam basin.It is the first albite aplite vein related U-Th-NbREE deposit recognized in China.Mineralization can be divided into two types:vein and disseminated veinlet types.Vein type mineralization is entirely hosted in albite aplite,while disseminated veinlet type refers to disseminated veinlets produced in greenschist wall rock.Three mineralization stages have been delineated according to detailed mineralogical analyses,i.e.magmatic,hydrothermal main mineralization and post-ore stages.The magmatic stage is characterized by the"droplet"U-Th-Nb mineral(uraninite,uranothorite,thorite,viggezzite,etc.)inclusions hosted in the albite grains.The main hydrothermal mineralization stage is mainly the REE mineralization stage,accompanied by Nb and Th mineralization.The major ore minerals include allanite,bastnaesite,thorite,Nb-titanite,zircon,etc.,closely intergrown with low-temperature gangue minerals such as apatite,calcite,chlorite and quartz.The post-ore stage marks the termination of the mineralization system and is represented by the widespread calcite quartz stockworks.Based on our comprehensive analyses of mineralogical,major and trace elemental compositions,we suggest that the albitite vein is magmatic-hydrothermal in origin and derived from the partial melting of the REEand Nb-rich metasomatized mantle source.Although phase separation between silicate and carbonate/phosphate melts could take place in the magmatic stage,immiscibility between silicate melt and chloridedominated fluids is still the most important mechanism for REE mineralization and cause of Nb-Th remobilization and enrichment.The red color of albitite aplite vein is a useful prospecting mark in the field,and more mineralization can be expected in the deeply buried or peripheral areas of the deposit according to the metallogenic model of similar U-Th-Nb-REE mineralization systems.
引文
[1]LINNEN R L,LICHTERVELDE M V,CERNY P.Granitic pegmatites as sources of strategic metals[J].Elements,2012,8:275-280.
    [2]CHAKHMOURADIAN A R,ZAITSEV A N.Rare earth mineralization in igneous rocks:sources and processes[J].Elements,2012,8:347-353.
    [3]LINNEN R L,SAMSON I M,WILLIAMS-JONES A E,et al.Geochemistry of the rare earth element,Nb,Ta,Hf and Zr deposit[M].Treatise on Geochemistry,2014:543-568.
    [4]MARKS M A W,MARKL G.A global review on agpaitic rocks[J].Earth-Science Reviews,2017,173:229-258.
    [5]VASYUKOVA O V,WILLIAMS-JONES A E.The evolution of immiscible silicate and fluoride melts:implications for REE ore-genesis[J].Geochimica et Cosmochimica Acta,2016,172:205-224.
    [6]TIMOFEEV A,WILLIAMS-JONES A E.The origin of niobium and tantalum mineralization in the Nechalacho REEdeposit,NWT,Canada[J].Economic Geology,2015,110:1719-1735.
    [7]XU C,CAMPBELL I H,ALLEN C M,et al.U-Pb zircon age,geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong,China[J].Lithos,2008,105:118-128.
    [8]XIE Y L,LI Y X,HOU Z Q,et al.Model for carbonatite hosted REE mineralization:the Mianning-Dechang REEbelt,Western Sichuan Province,China[J].Ore Geology Reviews,2015,70:595-612.
    [9]XIE Y L,HOU Z Q,GOLDFARB R J,et al.Rare earth element deposits in China[J].Economic Geology,2016,18:115-136.
    [10]傅成铭,权志高,周伟.青海查查香卡矿床铀、稀土元素矿化特征及成矿潜力分析[J].铀矿地质,2011,27(2):103-107.
    [11]廉康,刘林,陈擎.青海查查香卡铀矿地质特征及控矿因素分析[J].东华理工大学学报(自然科学版),2016,39(3):245-252.
    [12]SARAPAA O,ANI T A,LAHTI S I,et al.Rare earth exploration potential in Finland[J].Journal of Geochemical Exploration,2013,133:25-41.
    [13]SONG S G,NIU Y L,SU L,et al.Continental orogenesis from ocean subduction,continent collision/subduction,to orogen collapse,and orogen recycling:the example of the North Qaidam UHPM belt,NW China[J].Earth-Science Reviews,2014,129:59-84.
    [14]刘林,冯伟,陈擎.柴达木东北缘铀成矿地质条件及找矿远景研究[J].东华理工大学学报(自然科学版),2013,36(3):249-254.
    [15]核工业二○三所.青海省乌兰县查查香卡地区铀多金属矿预查报告[R].咸阳:核工业二○三所,2016.
    [16]张建新,万渝生,许志琴,等.柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代[J].岩石学报,2001,17(3):453-458.
    [17]陆松年,王惠初,李怀坤,等.柴达木盆地北缘“达肯达坂群”的再厘定[J].地质通报,2002,21(1):19-23.
    [18]赖绍聪,邓晋福,赵海玲.柴达木北缘古生代蛇绿岩及其构造意义[J].现代地质,1996,10(1):18-27.
    [19]王惠初,陆松年,袁桂邦,等.柴达木盆地北缘滩间山群的构造属性及形成时代[J].地质通报,2003,22(7):487-493.
    [20]李峰,吴志亮,李宝珠.柴达木北缘滩涧山群时代及其地质意义[J].大地构造与成矿学,2007,31(2):226-233.
    [21]高晓峰,校培喜,贾群子.滩涧山群的重新厘定:来自柴达木盆地周缘玄武岩年代学和地球化学证据[J].地质学报,2011,85(9):1452-1463.
    [22]张孝攀,王全锋,慧洁,等.柴北缘滩涧山群火山岩岩石化学特征及构造环境[J].矿物岩石,2015,35(1):18-26.
    [23]VASYUKOVA O V,WILLIAMS-JONES A E.Fluoride-silicate melt immiscibility and its role in REE ore formation:evidence from the Strange Lake rare metal deposit,QuebecLabrador,Canada[J].Geochimica et Cosmochimica Acta,2014,139:110-130.
    [24]NORRISH K,HUTTON J T.An accurate X-ray spectrographic method for the analysis of a range of geological samples[J].Geochimica et Cosmochimica Acta,1969,33(4):431-454.
    [25]GB/T 14506.14-2010.硅酸盐岩石化学分析方法第14部分:氧化亚铁量测定[S].北京:标准出版社,2010.
    [26]QU X M,HOU Z Q,LI Y G.Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt,southern Tibetan Plateau[J].Lithos,2004,74:131-148.
    [27]DE LA ROCHE H,LETERRIER J,GRANDCLAUDE P,et al.A classification of volcanic and plutonic rocks using R1-R2 diagrams and major-element analyses:its relation with current nomenclature[J].Chemical Geology,1980,29:183-210.
    [28]SUN S S,MCDONOUGH W F.Chemical and isotopic study of oceanic basalts:implications for mantle composition and processes[J].Geological Society of London,Special Publication,1989,42:313-345.
    [29]CUNEY M,EMETZ A,MERCADIER J,et al.Uranium deposits associated with Na-metasomatism from central Ukraine:a review of some of the major deposits and genetic constraints[J].Ore Geology Reviews,2012,44:82-106.
    [30]钟军,范洪海,顾大钊,等.甘肃龙首山成矿带新水井铀(钍)矿床元素迁移规律及成矿作用过程研究[J].中国地质,2016,43(4):1393-1408.
    [31]杜乐天.烃碱流体地球化学原理:重论热液作用与岩浆作用[M].北京:科学出版社,1996:1-229.
    [32]胡西顺.陕西双王金矿床成因的再认识[J].黄金科学技术,2009,17(2):17-23.
    [33]张作衡,毛景文,李晓峰.双王角砾岩型金矿床地质地球化学及成矿机制[J].矿床地质,2004,23(2):241-252.
    [34]刘淑文,薛春纪,李强,等.秦岭旬阳盆地下古生界钠长石岩岩石学和地球化学特征[J].中国地质,2005,32(3):424-433.
    [35]罗金海,周亚军,徐欢,等.南秦岭旬阳盆地东部晚泥盆世岩浆成因钠长岩及其构造意义[J].地质学报,2017,91(2):302-314.
    [36]LE MAITRE R W.Igneous rocks:a classification and glossary of terms[M].Cambridge:Cambridge University Press,2002:1-126.
    [37]AZER M K,STERN R J,KIMURA J I.Origin of a late Neoproterozoic(605±13 Ma)intrusive carbonate-albitite complex in Southern Sinai,Egypt[J].International Journal of Earth Sciences,2010,99:245-267.
    [38]赵如意,姜常义,陈旭,等.甘肃省龙首山成矿带中段钠长岩地质特征及其与铀矿化关系研究[J].地质与勘探,2015,51(6):1069-1078.
    [39]DILL H G.Pegmatites and palites:their genetic and applied ore geology[J].Ore Geology Reviews,2015,69:417-561.
    [40]SHIMRON A E.Petrogenesis of the Tarr albitite-carbonatite complex,Sinai Peninsula[J].Mineralogy Magzine,1975,40:13-24.
    [41]MELLUSO L,CUCCINIELLO C,LE ROEX A P,et al.The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex,and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar[J].Geochimica et Cosmochimica Acta,2016,185:435-452.
    [42]钟军,范洪海,陈金勇,等.辽宁赛马霓霞正长岩黑云母地球化学特征、40 Ar-39 Ar年龄及其地质意义[J].地球科学:中国地质大学学报,2018(待刊).
    [43]VESKLER I V,DORFMAN A M,DULSKI P,et al.Partitioning of elements between silicate melt and immiscible fluoride,chloride,carbonate,phosphate and sulfate melts,with implications to the origin of natrocarbonatite[J].Geochimica et Cosmochimica Acta,2012,79:20-40.
    [44]DALOU C,KOGA K T,HAMMOUDA T,et al.Trace element partitioning between carbonatitic melts and mantle transition zone minerals:implications for the source of carbonatites[J].Geochimica et Cosmochimica Acta,2009,73:239-255.
    [45]TROFANENKO J,WILLIAMS-JONES A E,SIMANDL GJ,et al.The nature and origin of the REE mineralization in the Wicheeda carbonatite,British Columbia,Canada[J].Economic Geology,2016,111:199-223.
    [46]VASYUKOVA O V,WILLIAMS-JONES A E,BLAMEYN J F.Fluid evolution in the Strange Lake granitic pluton,Canada:implications for HFSE mobilization[J].Chemical Geology,2016,444:83-100.
    [47]MIGDISOV A A,WILLIAMS-JONES A E,VAN HINS-BERG V,et al.An experimental study of the solubility of baddeleyite(ZrO2)in fluoride-bearing solutions at elevated temperature[J].Geochimica et Cosmochimica Acta,2011,75:7426-7434.
    [48]AYERS J C,ZHANG L,LUO Y,et al.Zircon solubility in alkaline aqueous fluids at upper crustal conditions[J].Geochimica et Cosmochimica Acta,2012,96:18-28.
    [49]KEPPLER H,WYLLIE P J.Role of fluids in transport and fractionation of uranium and thorium in magmatic processes[J].Nature,1990,348:531-533.
    [50]HOU Z Q,TIAN S H,XIE Y L,et al.The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkalic complex in the eastern Indo-Asian collision zone,SW China[J].Ore Geology Reviews,2009,36:65-89.
    [51]SMITH M P,CAMPBELL L S,KYNICHY J.A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits,Inner Mongolia,China:multistage processes and outstanding questions[J].Ore Geology Reviews,2015,64(1):459-476.
    [52]FAN H R,YANG K F,HU F F,et al.The giant Bayan Obo REE-Nb-Fe deposit,China:controversy and ore genesis[J].Geoscience Frontiers,2016,7:335-344.
    [53]MIGDISOV A A,WILLIAMS-JONES A E.Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids[J].Mineralium Deposita,2014,49:987-997.
    [54]MIGDISOV A,WILLIAMS-JONES A E,BRUGGER J,et al.Hydrothermal transport,deposition,and fractionation of the REE:experimental data and thermodynamic calculations[J].Chemical Geology,2016,439:13-42.
    [55]ZHONG J,CHEN Y J,PIRAJNO F,et al.Geology,geochronology,fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit,Zijinshan orefield,Fujian Province,China[J].Ore Geology Reviews,2014,57:61-77.
    [56]ZHONG J,CHEN Y J,PIRAJNO F.Geology,geochemistry and tectonic settings of the molybdenum deposits in South China:a review[J].Ore Geology Reviews,2017,81:829-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700