绿潮藻类分解过程中水体磷-铁-硫含量的动态变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Changes of Phosphorus, Iron and Sulfur Concentrations in Water during the Decomposition of Green Tide Algae
  • 作者:徐书童 ; 张文斌 ; 高丽 ; 魏烈群
  • 英文作者:XU Shutong;ZHANG Wenbin;GAO Li;WEI Liequn;Ocean School, Yantai University;
  • 关键词:藻分解 ; 可溶性磷 ; 亚铁离子 ; 释放
  • 英文关键词:algal decomposition;;soluble reactive phosphorus;;Fe~(2+);;release
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:烟台大学海洋学院;
  • 出版日期:2019-02-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:v.28
  • 基金:山东省自然科学基金面上项目(ZR2018MD018);; 国家自然科学基金项目(41273130);; 烟台大学研究生科技创新基金项目(YDZD1919)
  • 语种:中文;
  • 页:TRYJ201902020
  • 页数:9
  • CN:02
  • ISSN:44-1661/X
  • 分类号:166-174
摘要
以荣成天鹅湖暴发的硬毛藻和湖中心的沉积物为试材,通过室内模拟分析了不同密度藻类分解条件下水体可溶性磷(SRP)、Fe~(2+)、S~(2-)质量浓度以及主要理化参数的动态变化,以探讨硬毛藻分解对沉积物中铁磷释放的影响以及铁磷间的耦合关系,为藻华后水体富营养化以及内源污染的治理提供理论依据。在整个试验周期,不同藻密度条件下水体SRP、Fe~(2+)和S~(2-)的质量浓度变幅分别为0.004-0.89、0.04-0.50和0.02-17.36 mg·L~(-1);试验前期质量浓度较高,之后随时间呈下降趋势,后期各处理间差异减小。多重比较表明,残藻密度对上覆水中SRP、Fe~(2+)和S~(2-)的质量浓度均具有极显著影响(P<0.01);各处理质量浓度表现为:沉积物+50 g藻+水>沉积物+30 g藻+水>30 g藻+水>沉积物+10 g藻+水>沉积物+水。试验前期(1-7 d),各处理差异较大,其中沉积物+50 g藻+水与沉积物+30 g藻+水、沉积物+10 g藻+水处理间的SRP、Fe~(2+)、S~(2-)质量浓度差异均达极显著水平(P<0.01);沉积物+10 g藻+水与沉积物+水处理间Fe~(2+)质量浓度差异达显著水平(P<0.05)。藻分解过程中,上覆水磷铁之间、磷硫质量浓度间均呈显著正相关关系,r值分别为0.671(P=0.000)和0.498(P=0.013)。残藻密度越高,水体理化性质的变幅则越大。硬毛藻体内的磷和铁可在分解初期大量向水体释放,且高密度残藻的堆积分解可明显降低水土界面的氧化还原电位而促进沉积物中磷铁的释放,使得水体磷和铁质量浓度急剧增加。
        In this paper, the sediments in central lake and Chaetomorpha in Rongcheng Swan Lake were collected to study the changes and correlation relationship in concentrations of soluble reactive phosphorus(SRP), Fe~(2+) and S~(2-)in water under different algae densities during the decomposition by laboratory simulation test. In addition, some physicochemical indicators in water were monitored during the test. The aim of this paperis to discuss the effect of Chaetomorpha decomposition on the releases of iron and phosphorus from the sediments and the coupling relationship between iron and phosphorus. The results can provide a theoretical basis for the treatments of water eutrophication and internal pollution after algal blooms. During the whole period, the mass concentrations of SRP, Fe~(2+) and S~(2-)in water under different density conditions were 0.004-0.89, 0.04-0.50 and 0.02-17.36 mg·L~(-1),respectively. The concentration was higher in the early stage of the experiment, and then decreased with time. In the later stage, the difference in concentration among different treatments decreased. Multiple comparisons showed that algal density had a significant effect on the concentrations of SRP, Fe~(2+) and S~(2-)in overlying water(P<0.01). The order of SRP, Fe~(2+) and S~(2-)concentrations of different treatments was sediment+50 g algae+water>sediment+30 g algae+water>sediment+10 g algae+water>sediment+water.During the first 7 days, SRP, Fe~(2+) and S~(2-)concentrations in sediment+50 g algae+water treatment were all significantly higher than those in the treatments of sediment+30 g algae+water and sediment+10 g algae+water(P<0.01). There was both positive significant correlation between phosphorus and iron(r=0.671, P=0.000), phosphorus and sulfur(r=0.498, P=0.013) during the algal decomposition process. The higher the algae density was, the greater the variation was in the physico-chemical parameters in water.Phosphorus and iron in Chaetomorpha tissue could release into the water at the beginning of algal decomposition. The decomposition of high-density residual algae could reduce the redox potential at the sediment-water interface, and promote the releases of phosphorus and iron from the sediments. Therefore, the concentrations of iron and phosphorus in water increased rapidly during the algal decomposition.
引文
BALASUBRAMANIAN D,ARUNACHALAM K,DAS A K,et al.,2012.Decomposition and nutrient release of Eichhornia crassipes,(Mart.)Solms.under different trophic conditions in wetlands of eastern Himalayan foothills[J].Ecological Engineering,44:111-122.
    CHUAI X M,DING W,CHEN X F,et al.,2011.Phosphorus release from cyanobacterial blooms in Meiliang Bay of Lake Taihu,China[J].Ecological Engineering,37(6):842-849.
    CHEN M S,DING S M,CHEN X,et al.,2018.Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments[J].Water Research,133:153-164.
    DING S M,WANG Y,WANG D,et al.,2016.In situ,high-resolution evidence for iron-coupled mobilization of phosphorus in sediments[J].Scientific Reports,6:24341.
    DING S M,SUN Q,XU D,et al.,2012.High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide:The first observation of their simultaneous release in sediments[J].Environment Science&Technology,46(15):8297-8304.
    DONG H K,YOUNG T J,YOUNG D H,2018.Phosphorus fractionation and release characteristics of sediment in the Saemangeum Reservoir for seasonal change[J].International Journal of Sediment Research,33(3):250-261.
    GAO L,ZHANG L H,HOU J Z,et al.,2013.Decomposition of macroalgal blooms influences phosphorus release from the sediments and implications for coastal restoration in Swan Lake,Shandong,China[J].Ecological Engineering,60(6):19-28.
    GILES C D,ISLES P D F,MANLEY T,et al.,2016.The mobility of phosphorus,iron,and manganese through the sediment-water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions[J].Biogeochemistry,127(1):1-20.
    GAO L,ZHANG L H,SHAO H B,2014.Phosphorus Bioavailability and Release Potential Risk of the Sediments in the Coastal Wetland:A Case Study of Rongcheng Swan Lake,Shandong,China[J].Clean-Soil,Air,Water,42(7):963-972.
    GARCíA-ROBLEDO E,CORZO A,2011.Effects of macroalgal blooms on carbon and nitrogen biogeochemical cycling in photoautotrophic sediments:an experimental mesocosm[J].Marine Pollution Bulletin,62(7):1550-1556.
    HAN C,DING S M,YAO L,et al.,2015.Dynamics of phosphorusiron-sulfur at the sediment-water interface influenced by algae blooms decomposition[J].Journal of Hazardous Materials,300:329-337.
    MARTINS G,PEIXOTO L,BRITO A G,et al.,2014.Phosphorus-iron interaction in sediments:can an electrode minimize phosphorus release from sediments[J].Reviews in Environmental Science&Bio/technology,13(3):265-275.
    PEI G F,WANG Q,LIU G X,2015.The role of periphyton in phosphorus retention in shallow lakes with different trophic status,China[J].Aquatic Botany,125:17-22.
    PUTTONEN I,KOHONEN T,MATTILA J,2016.Factors controlling phosphorus release from sediments in coastal archipelago areas[J].Marine Pollution Bulletin,108(1-2):77-86.
    SUN Q Y,SHENG Y Q,YANG J,et al.,2016.Dynamic characteristics of sulfur,iron and phosphorus in coastal polluted sediments,north China[J].Environmental Pollution,219:588-595.
    SMOLDERS E,BAETENS E,VERBEECK M,et al.,2017.Internal loading and redox cycling of sediment iron explain reactive phosphorus concentrations in lowland rivers[J].Environmental Science&Technology,51(5):2584-2592.
    SHEN Q S,LIU C,ZHOU Q L,et al.,2013.Effects of physical and chemical characteristics of surface sediments in the formation of shallow lake algae-induced black bloom[J].Journal of Environmental Sciences,25(12):2353-2360.
    WANG J Z,JIANG X,ZHENG B H,et al.,2016.Effect of algal bloom on phosphorus exchange at the sediment-water interface in Meiliang Bay of Taihu Lake,China[J].Environmental Earth Sciences,75(1):1-9.
    陈可可,2015.非稳态条件下东海内陆架泥质沉积物中硫和铁的早期成岩作用[D].青岛:中国海洋大学.CHEN K K,2015.Unsteady diagenesis of sulfur and iron in the East China Sea inner shelf muds[D].Qingdao:China Ocean University.
    蔡萍,吴雨琛,刘新,等,2015.沉积物和藻体对太湖湖泛的诱发及水体致黑物的供应潜力[J].湖泊科学,27(4):575-582.CAI P,WU Y H,LIU X,et al.,2015.The contribution of sediment and algal to the formation of black bloom and their potential to supply the black substance in waters in Lake Taihu[J].Lake Science,27(4):575-582.
    刁晓君,李一葳,何彦芳,等,2015.水华生消过程中巢湖水体和沉积物理化性质变化特征[J].湖泊科学,27(6):1124-1132.DIAO X J,LI Y Q,HE Y F,et al.,2015.Change characteristics of physico-chemical properties of water and sediment during theprocesses of algal blooms formation,outbreak and extinction in Lake Chaohu[J].Lake Science,27(6):1124-1132.
    薄涛,季民,2017.内源污染控制技术研究进展[J].生态环境学报,26(3):514-521.BO T,JI M,2017.The Advance of Control Techniques for Internal Pollution[J].Ecology and Environmental Sciences,26(3):514-521.
    侯金枝,魏权,高丽,等,2013.刚毛藻分解对上覆水磷含量及赋存形态的影响[J].环境科学,34(6):2184-2190.HOU J Z,WEI Q,GAO L,et al.,2013.Influence of Decomposition of Cladophora sp.on Phosphorus Concentrations and Forms in the Overlying Water[J].Environmental Science,34(6):2184-2190.
    刘佳,雷丹,李琼,等,2018.黄柏河流域梯级水库沉积物磷形态特征及磷释放通量分析[J].环境科学,39(4):1608-1615.LIU J,LEI D,LI Q,et al.,2018.Characteristics of Phosphorus Fractions and Phosphate Diffusion Fluxes of Sediments in Cascade Reservoirs of the Huangbai River[J].Environmental Science,39(4):1608-1615.
    刘国峰,申秋实,张雷,等,2010.藻源性黑水团环境效应:对水-沉积物界面氮磷变化的驱动作用[J].环境科学,32(12):2917-2924.LIU G F,SHEN Q S,ZHANG L,et al.,2010.Environment Effects of Algae-Caused Black Spots:Driving Effects on the N,P Changes in the Water-Sediment Interface[J].Environmental Science,32(12):2917-2924.
    孟祥森,张文斌,高丽,等,2017.绿潮硬毛藻分解对天鹅湖水体氮磷水平的影响[J].环境科学研究,30(5):697-704.MENG X S,ZHANG W B,GAO L,et al.,2017.Effects of the decomposition of Chaetomorpha sp.on nitrogen and phosphorus levels in water from Swan Lake[J].Research of Environmental Sciences,30(5):697-704.
    宋鹏鹏,侯金枝,高丽,等,2011.荣成天鹅湖沉积物磷的赋存形态和时空分布特征[J].水土保持学报,25(3):98-101.SONG P P,HOU J Z,GAO L,et al.,2011.Phosphorus Fractions and Temporal-Spatial Distribution Characteristics in Sediments from Rongcheng Swan Lake[J].Journal of Soil and Water Conservation,25(3):98-101.
    孙清清,陈敬安,王敬富,等,2017.阿哈水库沉积物-水界面磷、铁、硫高分辨率空间分布特征[J].环境科学,38(7):2810-2818.SUN Q Q,CHEN J A,WANG J F,et al.,2017.High-resolution Distribution Characteristics of Phosphorous,Iron and Sulfur Across the Sediment-Water Interface of Aha Reservoir[J].environmental science,38(7):2810-2818.
    文帅龙,龚琬晴,吴涛,等,2018.于桥水库沉积物-水界面氮磷剖面特征及交换通量[J].环境科学,39(5):2154-2164.WEN S L,GONG W Q,WU T,et al.,2018.Distribution Characteristics and Fluxes of Nitrogen and Phosphorus at the Sediment-water Interface of Yuqiao Reservoir[J].Environmental Science,39(5):2154-2164.
    王敬富,陈敬安,曾艳,等,2012.贵州红枫湖沉积物磷赋存形态的空间变化特征[J].湖泊科学,24(5):789-796.WANG J F,CHEN J A,ZENG Y,et al.,2012.Spatial distribution characteristics of phosphorus forms in sediment of Lake Hongfeng,Guizhou Province[J].Lake Science,24(5):789-796.
    魏权,邵雪琳,高丽,2014.绿潮藻类暴发对天鹅湖水体和沉积物磷含量的影响[J].生态环境学报,23(1):139-144.WEI Q,SHAO X L,GAO L,2014.Effects of macroalgal blooms on phosphorus concentrations in water and sediments of Rongcheng Swan Lake[J].Ecology and Environmental Sciences,23(1):139-144.
    王婷,王坤,姜霞,2018.东洞庭湖沉积物覆水后磷形态变化及其释放量[J].湖泊科学,30(4):937-947.WANG T,WANG K,JIANG X,2018.Influence of rewetting process on distribution and release of phosphorus in sediments of East Lake Dongting[J].Lake Science,30(4):937-947.
    王艳平,关庆伟,李超,等,2015.巢湖沉积物有效态磷与硫的DGT原位同步分析研究[J].环境科学学报,35(8):2512-2518.WANG Y P,GUAN Q W,LI C,et al.,2015.A study of in situ synchronous measurement of available phosphorus and sulfur in the sediments of lake Chaohu by diffusive gradients in thin films(DGT)[J].Acta Scientiae Circumstantiae,35(8):2512-2518.
    王玉琳,汪靓,华祖林,等,2016.巢湖南淝河口黑水团区流速和溶解氧与Fe2+、S2-浓度的空间关联性[J].湖泊科学,28(4):710-717.WANG Y L,WANG L,HUA Z L,et al.,2016.The relationships of velocity,dissolved oxygen with Fe2+,S2-in black bloom region on Nanfei River estuary of Lake Chaohu[J].Lake Science,28(4):710-717.
    王亚蕊,陈向超,陈丙法,等,2018.藻屑堆积对沉积物-水界面污染物的释放效应[J].环境科学学报,38(1):142-153.WANG Y R,CHEN X C,CHEN B F,et al.,2018.The release of pollutants in sediment-water interface after algal-debris accumulated in sediments[J].Acta Scientiae Circumstantiae,38(1):142-153.
    杨艳,邓伟明,何佳,等,2018.溶解氧对滇池沉积物氮磷释放特征影响研究[J].环境保护科学,44(5):36-41.YANG Y,DENG W M,HE J,et al.,2018.Study of the Effects of Dissolved Oxygen on Nitrogen and Phosphate Release from the Sediment in Dianchi Lake[J].Environmental Protection Science,44(5):36-41.
    曾诚,2015.太湖藻源性“湖泛”发生的过程以及环境影响研究[D].武汉:华中农业大学.ZENG C,2015.The generating process and environmental influences of algae-caused black spots in Lake Taihu[D].Wuhan:Central China Agricultural University.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700