热处理对奥氏体不锈钢微观组织和耐点蚀性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of heat treatment on microstructure and pitting corrosion resistance of austenitic stainless steel
  • 作者:孙京丽 ; 陈斌 ; 刘帆 ; 王玥 ; 许恒庭 ; 曹雪峰
  • 英文作者:Sun Jingli;Chen Bin;Liu Fan;Wang Yue;Xu Hengting;Cao Xuefeng;Shanghai Spaceflight Precision Machinery Institute;School of Materials Science and Engineering,Nanjing University of Science and Technology;
  • 关键词:晶粒尺寸 ; 晶界 ; 微应变 ; 电子背散射衍射 ; 点腐蚀
  • 英文关键词:grain size;;grain boundary;;microstrain;;electron backscatter diffraction technique;;pitting corrosion
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:上海航天精密机械研究所;南京理工大学材料科学与工程学院;
  • 出版日期:2019-02-25
  • 出版单位:金属热处理
  • 年:2019
  • 期:v.44;No.498
  • 基金:上海市浦江人才计划(15PJ1433600)
  • 语种:中文;
  • 页:JSRC201902030
  • 页数:7
  • CN:02
  • ISSN:11-1860/TG
  • 分类号:126-132
摘要
以304奥氏体不锈钢为研究对象,选用3种不同热处理制度处理得到3种状态的试样。利用电子背散射衍射表征技术对每个状态试样的微观组织进行表征,将试样浸泡于三氯化铁溶液中测试耐点腐蚀性能。结果表明,点腐蚀易发生于大角度晶界附近及晶格畸变大的区域;增加的热处理温度使得晶粒粗化,单位面积大角度晶界长度降低,且能够形成高比例的有序度高的重位点阵晶界;同时,增加的热处理温度使得晶格畸变减小,微观结构更均匀,最终使得304奥氏体不锈钢抗点腐蚀性能更好。
        Three kinds of 304 austenitic steel specimens undergone different heat treatments were fabricated. Microstructure of each specimen was characterized by using the electron backscatter diffraction technique in a scanning electron microscopy. The pitting corrosion experiment was conducted in 6% Fe Cl_3 solution. The results show that pitting preferentially forms near the high angle grain boundaries and in the areas with high microstrains. The increase of heating temperature make the grains coarsen and the decrease of the length of the high angle boundaries per unit area,while the fraction of the coincidence site lattice grain boundaries with low energies increases with the heating temperature. A higher temperature induces less crystalline defects and a more homogeneous passive film on the specimen,which improves the pitting corrosion resistance of the 304 austenitic steel.
引文
[1]孙京丽,邹丹,金晶,等.三种常用不锈钢的耐局部腐蚀性能[J].材料研究学报,2017,31(9):665-671.Sun Jingli,Zou Dang,Jin Jing,et al. Localized corrosion resistance of three commonly-used stainless steels[J]. Chinese Journal of Materials Research,2017,31(9):665-671.
    [2]Williams D E,Newman R C,Song Q,et al. Passivity breakdown and pitting corrosion of binary alloys[J]. Nature,1991,350:216-219.
    [3]Stewart J,Williams D E. The initiation of pitting corrosion on austenitic stainless steel:on the role and importance of sulphide inclusions[J].Corrosion Science,1992,33(3):457-463,465-474.
    [4]Wijesinghe T L S L,Blackwood D J. Real time pit initiation studies on stainless steels:The effect of sulphide inclusions[J]. Corrosion Science,2007,49(4):1755-1764.
    [5]Tsuru T,Latanision R M. The corrosion resistance of microcrystalline stainless steel[J]. Journal of the Electrochemical Society,1982,129:1402-1408.
    [6]Hasegawa M, Osawa M. Corrosion behavior of ultrafine grained austenitic stainless steel[J]. Corrosion,1984,40:371-374.
    [7]Wang T,Yu J,Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel[J]. Surface and Coating Technology,2006,200(16/17):4777-4781.
    [8]Wang S G,Sun M,Long K. The enhanced even and pitting corrosion resistances of bulk nanocrystalline steel in HCl solution[J]. Steel Research International,2012,83:800-807.
    [9]Eskandari M,Yeganeh M,Motamedi M. Investigation in the corrosion behaviour of bulk nanocrystalline 316L austenitic stainless steel in Na Cl solution[J]. Micro and Nano Letters,2012,7:380-383.
    [10]石继红,武宝林,刘刚. 316L不锈钢表面纳米化后腐蚀性能研究[J].材料工程,2005(10):42-46Shi Jihong,Wu Baolin,Liu Gang. Study on corrosion property of 316L stainless steel with nanocrystalline surface[J]. Journal of Materials Engineering and Performance,2005(10):42-46.
    [11]吕爱强,张洋,李瑛,等.表面纳米化对316L不锈钢性能的影响[J].材料研究学报,2005,19(2):118-124.Lu Aiqiang, Zhang Yang, Li Ying, et al. Effects of surface nanocrystallization on the properties of 316L stainless steel[J].Chinese Journal of Materials Research,2005,19(2):118-124.
    [12]郎丰军,阮伟慧,李谋成,等.温度对316L不锈钢耐海水腐蚀性能的影响[J].腐蚀科学与防护技术,2012,24(1):61-64.Lang Fengjun, Ruan Weihui, Li Moucheng, et al. Influence of temperature on corrosion of 316L stainless steel in seawater[J].Corrosion Science and Protection Technology,2012,24(1):61-64.
    [13] Rodriguez P. Influence of metallurgical variables on corrosion[J].Key Engineering Materialia,1989,36:31-42.
    [14] Randle V. Twinning-related grain boundary engineering[J]. Acta Materialia,2004,52(14):4067-4081.
    [15] Li G,Wang Y,Cao Z. Effect of refined grain size on corrosion behaviour of metal Cr in media containing chloride ions[J]. CIESC Journal,2012,63(2):560-566.
    [16]Kim C S,Hu Y,Rohrer G S,et al. Five-parameter grain boundary distribution in grain boundary engineered brass[J]. Scripta Materialia,2005,52(7):633-637.
    [17]马力,阎永贵,李小亚.时效处理对CrCoMo不锈钢耐蚀性的影响[J].腐蚀科学与防护,2004,25(9):376-378.Ma,Li, Yan Yonggui, Li Xiaoya. Effect of aging treatment on corrosion resistance of CrCoMo stainless steel[J]. Corrosion Science and Protection Technology,2004,25(9):376-378.
    [18]朴楠,陈吉,尹成江,等.超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J].金属学报,2015,51(9):1077-1084.Piao Nan,Chen Ji,Yin Chenjiang,et al. Investigation on pitting corrosion behaviour of Utrafine-grained 304L stainless steel in Clcontaining solution[J]. Acta Metallurgica Sinica,2015,51(9):1077-1084.
    [19]Gupta R K,Birbilis N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel:A review[J].Corrosion Science,2015,92:1-15.
    [20]陈善华,吴杰,管登高,等.金属材料晶界工程研究进展[J].金属热处理,2006,31(3):1-6.Chen Shanhua, Wu Jie, Guan Denggao, et al. Review on grain boundary engineering of metallic materials[J]. Heat Treatment of Metals,2006,31(3):1-6.
    [21]杨辉,夏爽,张子龙,等.晶界工程对改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J].金属学报,2015,51(3):333-340.Yang Hui, Xia Shuang, Zhang Zilong, et al. Improving the intergranular corrosion resistance of the weld heat-affected zone by grain boundary engineering in 304 austenitic stainless steel[J]. Acta Metallurgica Sinica,2015,51(3):333-340.
    [22]Schuh C A,Kumar M,King W E. Analysis of grain boundary networks and their evolution during grain boundary engineering[J].Acta Materialia,2003,51(3):687-700.
    [23]Kumar M, King W E, Schwartz A J. Modifications to the microstructural topology in fcc materials through thermomechanical processing[J]. Acta Materialia,2000,48(9):2081-2091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700