铁盐与亚铁盐混凝除As(Ⅲ)性能的对比研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of arsenite removal processes by ferric salts and ferrous salts
  • 作者:张明月 ; 曾辉平 ; 吕育锋 ; 朱金凤 ; 杨航 ; 李冬 ; 张杰
  • 英文作者:ZHANG Ming-yue;ZENG Hui-ping;LV Yu-feng;ZHU Jin-feng;YANG Hang;LI Dong;ZHANG Jie;Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology;State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology;
  • 关键词:低含砷水 ; 铁盐 ; 铁盐 ; 吸附
  • 英文关键词:water with low concentration of As(Ⅲ);;ferrous salts;;ferric salts;;adsorption
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:北京工业大学水质科学与水环境恢复工程北京市重点实验室;哈尔滨工业大学城市水资源与水环境国家重点实验室;
  • 出版日期:2017-05-20
  • 出版单位:中国环境科学
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金资助项目(51308009)
  • 语种:中文;
  • 页:ZGHJ201705024
  • 页数:7
  • CN:05
  • ISSN:11-2201/X
  • 分类号:200-206
摘要
为研究不添加氧化剂时,高铁、亚铁盐混凝—过滤法净化低浓度As(Ⅲ)污染饮用水的可行性及对比两种铁盐除As(Ⅲ)性能差异,本试验分别从铁盐投加量、混凝最佳p H值、吸附容量、亚铁氧化去除As(Ⅲ)能力等方面,系统比较了亚铁盐和高铁盐去除As(Ⅲ)工艺性能.结果表明:在相同的试验条件下,高铁盐能够有效净化低浓度含As(Ⅲ)水,其投加量不足亚铁盐的一半,且出水p H波动较小.吸附是混凝除砷过程的主要机理,随铁盐投加量增加,吸附贡献率不断增加,且高铁盐吸附除砷效率始终比亚铁盐高.高铁、亚铁盐絮凝颗粒吸附除As(Ⅲ)的平衡时间为6h,最大吸附量分别为42.445和50.865mg/mg;亚铁盐能够催化氧化进水中40%左右的As(Ⅲ),但吸附效率较差,除As(Ⅲ)效果不及高铁盐.
        The present study was directed towards the feasibility of purification of water with low concentration of As(Ⅲ), using coagulant of ferrous salts and ferric salts without pre-oxidation technique, as well as the differences. Experiments about dosage, the best p H, adsorption capacity and oxidation capability of As(Ⅲ) with ferric salts were conducted. The results showed that ferrous salts was more effective in removal of As(Ⅲ), just half of the dosage was needed compared with ferric salts. Both p H of the treated water fluctuated narrowly. Adsorption was proved the main mechanism for As(Ⅲ) removal in the coagulation processes, and the adsorption made the greater contribution with the increasing dosage, while the ferrous salts had the better absorption efficiency than the ferric salts all the time. The adsorption of As(Ⅲ) by coagulation particles cost nearly 6hours to reach equilibrium and the maximum adsorption capacity were 42.445mg/mg for ferric salts, 50.865mg/mg for ferrous salts respectively. Due to a poor adsorption efficiency, ferric salts did worse in As(Ⅲ) removal, even though 40% of As(Ⅲ) was catalytically oxided in the process.
引文
[1]杨柳.生物滤池同步去除地下水中铁、锰、砷的工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2014.
    [2]GB/T5749-2006生活饮用水卫生标准[S].
    [3]Wang L,Giammar D E.Effects of p H,dissolved oxygen,and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite[J].Journal of Colloid and Interface Science,2015,448:331-338.
    [4]Zhang G S,Qu J H,Liu H J,et al.Removal Mechanism of As(III)by a Novel Fe-Mn Binary Oxide Adsorbent:Oxidation and Sorption[J].Environmental Science&Technology,2007,41(13):4613-4619.
    [5]Wu K,Liu R P,Liu H J,et al.Enhanced arsenic removal by in situ formed Fe–Mn binary oxide in the aeration-direct filtration process[J].Journal of Hazardous Materials,2012,239-240(239-240):308-315.
    [6]Roberts L C,Hug S J,Ruettimann T,et al.Arsenic Removal with Iron(II)and Iron(III)in Waters with High Silicate and Phosphate Concentrations[J].Environmental Science&Technology,2004,38(1):307-315.
    [7]Wang Y,Duan J,Liu S,et al.Removal of As(III)and As(V)by ferric salts coagulation–Implications of particle size and zeta potential of precipitates[J].Separation and Purification Technology,2014,135:64-71.
    [8]许保玖,严煦世,范瑾初.给水工程[M].4版.北京:中国建筑工业出版社,1999:526.
    [9]Qiao J,Jiang Z,Sun B,et al.Arsenate and arsenite removal by Fe Cl3:Effects of p H,As/Fe ratio,initial As concentration and co-existing solutes[J].Separation and Purification Technolog,2012,92(1):106-114.
    [10]Liu R P,Sun L H,Qu J H,et al.Arsenic removal through adsorption,sand filtration and ultrafiltration:In situ precipitated ferric and manganese binary oxides as adsorbents[J].Desalination,2009,(249):1233-1237.
    [11]Mitrakas M G,Panteliadis P C,Keramidas V Z,et al.Predicting Fe3+dose for As(V)removal at p Hs and temperatures commonly encountered in natural waters[J].Chemical Engineering Journal,2009,155(3):716-721.
    [12]Ghurye G,Clifford D,Tripp A.Iron coagulation and direct microfiltration to remove arsenic from groundwater[J].American Water Works Association,2004,96(4):143-152.
    [13]刘晓天.生物除铁除锰滤池对砷的去除效果及机理研究[D].哈尔滨:哈尔滨工业大学,2010.
    [14]张杰,李冬,杨宏,等.生物固锰除锰机理与工程技术[M].北京:中国建筑工业出版社,2005:29-34.
    [15]Wu K,Liu R,Li T,et al.Removal of arsenic(III)from aqueous solution using a low-cost by-product in Fe-removal plants—Fe-based backwashing sludge[J].Chemical Engineering Journal,2013,226(12):393-401.
    [16]张萌,邱琳,于晓晴,等.亚铁盐与高铁盐除磷工艺的对比研究[J].高校化学工程学报,2013,27(3):519-525.
    [17]Ouzounis K,Katsoyiannis I,Zouboulis A.Is the CoagulationFiltration Process with Fe(III)Efficient for As(III)Removal from Groundwaters?[J].Separation Science and Technology,2015,50(10):1587-1592.
    [18]王琪.铁盐混凝过程中As(III)和As(V)去除规律的研究[D].哈尔滨:哈尔滨工业大学,2011.
    [19]Pallier V,Feuillade-Cathalifaud G,Serpaud B,et al.Effect of organic matter on arsenic removal during coagulation/flocculation treatment[J].Journal of Colloid and Interface Science,2010,342(1):26-32.
    [20]Zouboulis A,Katsoyiannis I.Removal of arsenates from contaminated water by coagulation-direct filtration[J].Separation Science and Technology,2002,37(12):2859-2873.
    [21]李冬,孙宇,曾辉平,等.铁锰生物污泥吸附磷[J].中国环境科学,2014,34(10):2528-2535.
    [22]Ona-Nguema G,Morin G,Wang Y,et al.XANES Evidence for Rapid Arsenic(III)Oxidation at Magnetite and Ferrihydrite Surfaces by Dissolved O2 via Fe2+-Mediated Reactions[J].Environmental Science&Technology,2010,44(14):5416-5422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700