高速铁路高墩极值温度变形研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Extreme Temperature Deformation of Tall-pier for High-speed Railway
  • 作者:戴公连 ; 唐宇 ; 梁金宝
  • 英文作者:DAI Gonglian;TANG Yu;LIANG Jinbao;School of Civil Engineering,Central South University;National Engineering Laboratory for High Speed Railway Construction;
  • 关键词:桥梁工程 ; 温度变形 ; GPD模型 ; 空心高墩 ; 短期观测资料
  • 英文关键词:bridge engineering;;temperature deformation;;generalized pareto distribution model;;hollow tallpier;;short-term measurement data
  • 中文刊名:TDXB
  • 英文刊名:Journal of the China Railway Society
  • 机构:中南大学土木工程学院;高速铁路建造技术国家工程实验室;
  • 出版日期:2018-07-15
  • 出版单位:铁道学报
  • 年:2018
  • 期:v.40;No.249
  • 基金:国家自然科学基金(51378503,E080505);; 中国铁路总公司科技研究开发计划(2015G001-K);; 中南大学中央高校基本科研业务费(2017zzts149)
  • 语种:中文;
  • 页:TDXB201807018
  • 页数:6
  • CN:07
  • ISSN:11-2104/U
  • 分类号:114-119
摘要
为研究极值温度作用模式下高墩-梁轨体系的温度变形,需要获得混凝土高墩在日照作用下产生极值温度分布规律。基于昌赣铁路客运专线某高墩桥梁一年的温度监测数据,采用广义帕累托模型和时间序列加法模型分别对高墩100年重现期的极值温差分量和均匀温度分量进行了估计,并采用负指数函数对沿壁厚方向的温差进行拟合,获得了高墩极值温度组合。然后,采用热-力耦合的三维有限元模型计算了极值温度组合下的温度变形。结果表明:桥墩的地理位置东西侧温差为23.62℃,南北侧温差为6.91℃,且沿壁厚方向满足负指数函数分布时,为温度作用最不利情况;年均匀温度方程可获得每日均匀温度取值,并得到100年重现期内最大均匀温度可达51.2℃,最低为-9.8℃;通过极值温差和均匀温度分量的组合,可计算高墩在极值温度作用下的温度变形,为高速铁路桥梁设计和运营期内温度变形计算提供参考。
        In order to study the temperature deformation of the pier-bridge system under the extreme temperature,it is necessary to obtain the extreme temperature distribution of the concrete pier under the action of sunlight.Based on one-year temperature observation data for a tall pier bridge of Nanchang-Ganzhou high-speed railway,the GPD model and time series addition model were adopted to estimate the extreme temperature difference components and uniform temperature components within 100-year return period of the piers.The negative exponential function was used to fit the temperature difference along the wall thickness to obtain the extremum temperature combination of the piers.Then,a thermal mechanical coupled three-dimensional finite element model was used to calculate the temperature deformation under the combination of extreme temperature.The results show that when the temperature difference between the east and west sides of the pier is 23.62℃ and temperature difference between the south and the north sides of the pier is 6.91℃,and the temperature difference meets negative exponential function distribution along the wall thickness,it can be seen as the most unfavorable temperature effect.The annual uniform temperature equation can be used to obtain the daily average temperature value,and to obtain the maximum uniform temperature of 51.2℃and the minimum temperature of-9.8 ℃ within the 100-year return period.Based on the combination of extreme temperature difference and uniform temperature component,the temperature deformation of high pier under extreme temperature canbe calculated,which can provide a reference for the calculation of temperature deformation during the design and operation of high-speed railway bridges.
引文
[1]戴公连,唐宇,刘勇,等.高铁圆端形空心高墩日照温度场数值分析[J].桥梁建设,2016,46(6):67-72.DAI Gonglian,TANG Yu,LIU Yong,et al.Numerical Analysis of Solar Radiation Temperature Field of Rounded End Hollow Tall Pier of High-speed Railway Bridge[J].Bridge Construction,2016,46(6):67-72.
    [2]中华人民共和国铁道部.铁运[2012]83号高速铁路无砟轨道线路维修规则(试行)[S].北京:中国铁道出版社,2012.
    [3]British Standards Institution.EN 1991-1-5 Eurocode 1:Actions On Structures-Part 1-5:General Actions-Thermal Actions[S].London:British Standards Institution,2003.
    [4]中华人民共和国交通运输部.JTG D60—2015公路桥涵设计通用规范[S].北京:人民交通出版社,2015.
    [5]American Association of State Highway and Transportation Officials.LRFDUS-6 AASHTO LRFD Bridge Design Specifications[S].Washington,DC:American Association of State Highway and Transportation Officials,2012.
    [6]国家铁路局.TB 10092—2017铁路桥涵混凝土结构设计规范[S].北京:中国铁道出版社,2017.
    [7]中铁第四勘测设计院.桥梁墩台[M].北京:中国铁道出版社,1997.
    [8]曾永平,陈思孝,陈克坚,等.铁路空心墩寒潮作用下温度应力场试验研究[J].桥梁建设,2011,41(1):48-51.ZENG Yongping,CHEN Sixiao,CHEN Kejian,et al.Test Study of Temperature and Stress Fields of Railway Bridge Hollow Piers under Action of Cold Wave[J].Bridge Construction.2011,41(1):48-51.
    [9]赵坪锐,刘学毅,杨荣山,等.双块式无砟轨道温度荷载取值方法的试验研究[J].铁道学报,2016,38(1):92-97.ZHAO Pingrui,LIU Xueyi,YANG Rongshan,et al.Experimental Study of Temperature Load Determination Method of Bi-block Ballastless Track[J].Journal of the China Railway Society,2016,38(1):92-97.
    [10]林迟,欧进萍.桥梁结构空心构件梯度温度参数研究[J].铁道学报,2011,33(2):94-100.LIN Chi,OU Jinping.Study on Temperature Gradient Parameters of Hollow Members of Bridge Structure[J].Journal of the China Railway Society,2011,33(2):94-100.
    [11]李植淮,李春前,孙健康,等.基于GPD模型的车辆荷载效应极值估计[J].工程力学,2012,29(S1):166-171.LI Zhihuai,LI Chunqian,SUN Jiankang,et al.Estimation of Extreme Vehicle Load Effect Based on GPD Model[J].Engineering Mechanics,2012,29(S1):166-171.
    [12]周道成,段忠东,欧进萍.短期观测资料的海洋极值环境要素概率模型估计[J].工程力学,2009,26(3):176-181.ZHOU Daocheng,DUAN Zhongdong,OU Jinping.Extreme Value Distribution of Offshore Environmental Factor Based on Short-term Observation Data[J].Engineering Mechanics,2009,26(3):176-181.
    [13]CASTILLO J D,SERRA I.Likelihood Inference for Generalized Pareto Distribution[J].Computational Statistics&Data Analysis,2015,83:116-128.
    [14]CAERS J,BEIRLANT J,MAES M A.Statistics for Modeling Heavy Tailed Distributions in Geology:Methodology[J].Mathematical Geosciences,1999,31(4):391-410.
    [15]BROCKWELLP J,DAVIS R A.Time Series:Theory and Methods[M].2nd ed.New York:Springeze-verlag Inc.,1991:14-25.
    [16]戴公连,梁金宝,唐宇.基于GPD模型的箱轨极值温度梯度取值研究[J].华中科技大学学报(自然科学版),2017,45(8):69-73.DAI Gonglian,LIANG Jinbao,TANG Yu.Study on Value of Extreme Temperature Gradient for Box Girder-track Based on GPD Model[J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2017,45(8):69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700