La_(0.8)Sr_(0.2)MnO_3涂覆液浓度对La_(0.8)Sr_(0.2)FeO_3电极电化学性能的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Coating Solution Concentration on Electrochemical Properties of La_(0.8)Sr_(0.2)MnO_3-coated La_(0.8)Sr_(0.2)MnO_3 Electrodes
  • 作者:王靖 ; 张勇 ; 昝青峰 ; 邓长生
  • 英文作者:WANG Jing,ZHANG Yong,ZAN Qingfeng,DENG Changsheng(Beijing Fine Ceramics Laboratory,State Key Laboratory of New Ceramics and Fine Processing,Institute of Nuclear and New Energy Technology,Tsinghua University,Beijing 100084,China)
  • 关键词:锰酸锶镧 ; 铁酸锶 ; 电化学性能 ; 阻抗谱 ; 极化 ; 极化电阻
  • 英文关键词:lanthanum-strontium mangnite;lanthanum-strontium ferrite;electrochemical properties;impedance spectroscopy;polarization;polarization resistance
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:清华大学核能与新能源技术研究院,新型陶瓷与精细工艺国家重点实验室;
  • 出版日期:2013-03-02 09:39
  • 出版单位:硅酸盐学报
  • 年:2013
  • 期:v.41;No.289
  • 语种:英文;
  • 页:GXYB201304006
  • 页数:8
  • CN:04
  • ISSN:11-2310/TQ
  • 分类号:23-30
摘要
研究了0.005、0.010、0.020、0.035和0.040 mol/L 5种不同浓度的La0.8Sr0.2MnO3(LSM)溶液涂覆La0.8Sr0.2FeO3(LSF)电极后,其电化学性能的变化。X射线衍射结果表明:LSM和LSF化学相容性好。扫描电子显微镜观察可见:电极的晶粒尺寸和涂层厚度随着涂覆液浓度的增加而增加。电化学阻抗谱表明:在阳极极化条件下,经过0.010 mol/L LSM溶液涂覆处理后的LSF电极表现为最佳的电化学性能,其极化电阻在800℃仅为0.3.cm2。而且无论在阳极极化还是阴极极化处理后,涂覆LSM后的LSF电极的极化电阻,1200s内都呈现下降的趋势,LSM涂覆后的LSF电极具有一定的抗阳极极化的能力,归因于LSM涂层的良好催化特性。因此,0.010mol/LLSM溶液涂覆处理后的LSF可以作为固体氧化物电解池的阳极材料。
        La0.8Sr0.2MnO3(LSM)-coated La0.8Sr0.2FeO3(LSF) electrodes were prepared via the infiltration of LSM stock solution with different concentrations(0.005,0.010,0.020,0.035 and 0.040 mol/L) into porous LSF electrode.The effect of coating solution concentration on the electrochemical performance was investigated.The results obtained by X-ray diffraction indicated there was no reaction between the LSM and LSF in the LSM-coated LSF electrode.The thickness of coating and the grain size increased with the increase of LSM concentration.The porous LSF electrode coated with LSM solution of 0.010 mol/L exhibited an optimum performance under anodic polarization and the polarization resistance was 0.3.cm2at 800 ℃.Moreover,The polarization resistance variation of the LSM-coated LSF electrode was independent of the polarization directions,and decreased under both cathodic and anodic polarizations in a short-term(1 200 s).The LSM electrocatalytic activity of the electrode surface played an important role in the performance enhancement.The LSM-coated LSF electrode with 0.010 mol/L LSM solution could be a promising anode material for solid oxide electrolysis cell.
引文
[1]HERRING J S,O'BRIEN J E,STOOTS C M,et al.Progress inhigh-temperature electrolysis for hydrogen production using planarSOFC technology[J].Int J Hydrogen Energy,2007,32:440–450.
    [2]JENSEN S H,LARSEN P H,MOGENSEN M.Hydrogen and synthet-ic fuel production from renewable energy sources[J].Int J HydrogenEnergy,2007,32:3253–3257.
    [3]NI M,LEUNG M K H,LEUNG D Y C.Technological development ofhydrogen production by solid oxide electrolyzer cell(SOEC)[J].Int JHydrogen Energy,2008,33:2337–2354.
    [4]BRISSE A,SCHEFOLD J,ZAHID M.High temperature water elec-trolysis in solid oxide cells[J].Int J Hydrogen Energy,2008,33:5375–5382.
    [5]MOGENSEN M,JENSEN K V,J RGENSEN M J,et al.Progress inunderstanding SOFC electrodes[J].Solid State Ionics,2002,150:123–129.
    [6]BAUMANN F S,MAIER J,FLEIG J.The polarization resistance ofmixed conducting SOFC cathodes:A comparative study using thin filmmodel electrodes[J].Solid State Ionics,2008,179:1198–1204.
    [7]HAUCH A,JENSEN S H,RAMOUSSE S,et al.Performance anddurability of solid oxide electrolysis cells[J].J Electrochem Soc,2006,153:A1741–A1747.
    [8]KIM-LOHSOONTORN P,BRETT D J L,LAOSIRIPOJANA N,et al.Performance of solid oxide electrolysis cells based on compositeLa0.8Sr0.2MnO3–δ-yttria stabilized zirconia and Ba0.5Sr0.5Co0.8Fe0.2O3–δoxygen electrodes[J].Int J Hydrogen Energy,2010,35:3958–3966.
    [9]CHEN K,AI N.Development of(Gd,Ce)O2-Impregnated(La,Sr)MnO3anodes of high temperature solid oxide electrolysis Cells[J].J Elec-trochem Soc,2010,157:P89–P94.
    [10]SAN PING J.Nanoscale and nano-structured electrodes of solid oxidefuel cells by infiltration:Advances and challenges[J].Int J HydrogenEnergy,2012,37:449–470.
    [11]VOHS J M,GORTE R J.High-performance SOFC cathodes preparedby infiltration[J].Adv Mater,2009,21(9):943–956.
    [12]HAGIWARA A,HOBARA N,TAKIZAWA K,et al.Microstructurecontrol of SOFC cathodes using the self-organizing behavior ofLSM/ScSZ composite powder material prepared by spray pyrolysis[J].Solid State Ionics,2007,178:1123–1134.
    [13]DUSASTRE V,KILNER J A.Optimisation of composite cathodes forintermediate temperature SOFC applications[J].Solid State Ionics,1999,126:163–174.
    [14]MARINA O A,PEDERSON L R,WILLIAMS M C,et al.Electrodeperformance in reversible solid oxide fuel cells[J].J Electrochem Soc,2007,154:B452–B459.
    [15]WANG W,JIANG S P.Effect of polarization on the electrode behaviorand microstructure of(La,Sr)MnO3 electrodes of solid oxide fuel cells[J].J Solid State Electrochem,2004,8(11):914–922.
    [16]WANG W,HUANG Y,JUNG S,et al.A comparison of LSM,LSF,andLSCo for solid oxide electrolyzer anodes[J].J Electrochem Soc,2006,153:A2066–A2070.
    [17]SUN C,HUI R,ROLLER J.Cathode materials for solid oxide fuelcells:a review[J].J Solid State Electrochem,2009,14:1125–1144.
    [18]JIANG S P.Development of lanthanum strontium manganite perovs-kite cathode materials of solid oxide fuel cells:a review[J].J MaterSci,2008,43:6799–6833.
    [19]SUN S,ZHU X,YUAN Y.Electrochemical properties of La0.8Sr0.2FeO3–δ–La0.45Ce0.55O2–δcomposite cathodes for intermediate temperatureSOFC[J].J Solid State Electrochem,2010,14:2257–2260.
    [20]HUANG Y,VOHS J M,GORTE R J.Characterization of LSM-YSZcomposites prepared by impregnation methods[J].J Electrochem Soc,2005,152:A1347–A1353.
    [21]HUANG Y,VOHS J M,GORTE R J.SOFC cathodes prepared byinfiltration with various LSM precursors[J].Electrochem Solid-StateLett,2006,9:A237–A240.
    [22]XU X,JIANG Z,FAN X,et al.LSM-SDC electrodes fabricated withan ion-impregnating process for SOFCs with doped ceria electrolytes[J].Solid State Ionics,2006,177:2113–2117.
    [23]CHOI J J,WANTAO Q I N,MINGFEI L I U,et al.Preparation andcharacterization of(La0.8Sr0.2)0.95MnO3–δ(LSM)thin films andLSM/LSCF interface for solid oxide fuel cells[J].J Am Ceram Soc,2011,94:3340–3345.
    [24]LYNCH M E,YANG L,QIN W,et al.Enhancement of La0.6Sr0.4Co0.2 Fe0.8O3–δdurability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δinvestigated using a new test electrode platform[J].EnergyEnviron Sci,2011,4:2249–2258.
    [25]LIU M,LYNCH M E,BLINN K,et al.Rational SOFC material design:new advances and tools[J].Mater Today,2011,14(11):534–546.
    [26]JIANG S P,LOVE J G,ZHANG J P,et al.The electrochemical perfor-mance of LSM/zirconia-yttria interface as a function of a-sitenon-stoichiometry and cathodic current treatment[J].Solid State Io-nics,1999,121:1–10.
    [27]WANG W,JIANG S P.A mechanistic study on the activation processof(La,Sr)MnO3 electrodes of solid oxide fuel cells[J].Solid State Io-nics,2006,177:1361–1369.
    [28]JENSEN S H,HAUCH A,HENDRIKSEN P V,et al.A method toseparate process contributions in impedance spectra by variation of testconditions[J].J Electrochem Soc,2007,154:B1325–B1330.
    [29]WANG W G,MOGENSEN M.High-performance lanthanum-ferrite-based cathode for SOFC[J].Solid State Ionics,2005,176(5–6):457–462.
    [30]BACKHAUS-RICOULT M.Interface chemistry in LSM-YSZ compo-site SOFC cathodes[J].Solid State Ionics,2006,177:2195–2200.
    [31]VIRKAR A V.Mechanism of oxygen electrode delamination in solidoxide electrolyzer cells[J].Int J Hydrogen Energy,2010,35:9527–9543.
    [32]ADLER S B.Factors governing oxygen reduction in solid oxide fuelcell cathodes[J].Chem Rev,2004,104(10):4791–4844.
    [33]ADLER S B.Limitations of charge-transfer models for mixed-conduc-ting oxygen electrodes[J].Solid State Ionics,2000,135:603–612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700