纳米铁酸铜催化剂活化过一硫酸盐降解苯胺废水
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aniline wastewater degradation by nano copper ferrite catalyst activated peroxymonosulfate
  • 作者:王霁 ; 董正玉 ; 吴丽颖 ; 黄湾 ; 张倩 ; 洪俊明 ; 苏树明
  • 英文作者:WANG Ji;DONG Zhengyu;WU Liying;HUANG Wan;ZHANG Qian;HONG Junming;SU Shuming;College of Chemical Engineering,Huaqiao University;Industrial Wastewater Treatment Engineering Research Center of Fujian Provincial;Xiamen Hejian Health Technology Service Co.,Ltd.;
  • 关键词:纳米铁酸铜 ; 过一硫酸盐 ; 苯胺
  • 英文关键词:nano copper ferrite;;peroxymonosulfate;;aniline
  • 中文刊名:HJWR
  • 英文刊名:Environmental Pollution & Control
  • 机构:华侨大学化工学院;福建省工业废水生化处理工程技术研究中心;厦门和健卫生技术服务有限公司;
  • 出版日期:2019-03-15
  • 出版单位:环境污染与防治
  • 年:2019
  • 期:v.41;No.316
  • 基金:福建省科技计划项目(No.2017I01010015);; 厦门市科技计划项目(No.3502Z20173050、No.3502Z20140057、No.3502Z20153025、No.3502Z20151256);; 泉州市科技计划项目(No.2016Z074)
  • 语种:中文;
  • 页:HJWR201903016
  • 页数:5
  • CN:03
  • ISSN:33-1084/X
  • 分类号:81-85
摘要
使用溶胶凝胶法制备纳米铁酸铜催化剂,并用于活化过一硫酸盐催化降解苯胺废水。探究了纳米铁酸铜投加量、过一硫酸盐投加量和pH对苯胺降解率的影响。结果表明,在纳米铁酸铜投加量为2.0g/L、过一硫酸盐投加量为0.2g/L、pH=7.0的条件下,纳米铁酸铜活化过一硫酸盐催化降解苯胺废水的效果最好,反应60min,100mL质量浓度为10mg/L的苯胺降解率可达99%。纳米铁酸铜在反应过程中的总铁溶出量仅为0.87mg/L,总铜溶出量仅为0.03mg/L。苯胺的降解途径:一是苯胺中的氨基被自由基攻击,生成亚硝基苯,继续氧化生成硝基苯,然后开环矿化为CO_2和H_2O;二是氨基对位苯环上的氢原子被羟基取代生成对羟基苯胺,对羟基苯胺被自由基攻击生成亚氨基苯醌,进一步反应生成对苯醌,然后开环矿化为CO_2和H_2O。
        Nano copper ferrite catalyst was fabricated using sol-gel method and applied for activation peroxymonosulfate to degrade aniline.The key parameters including catalyst dosage,peroxymonosulfate dosage and pH were optimized.Results showed that the degradation rate of aniline could reach optimal(99%)under the catalyst dosage of 2.0 g/L,permonosulfate dosage of 0.2 g/L,and pH of 7.0 within 60 min for 100 mL 10 mg/L aniline wasterwater.The total iron releasing of catalyst was only 0.87 mg/L,and the total copper releasing 0.03 mg/L.The possible transformation pathway were proposed:amino group was attacked by radicals and turned into nitrosobenzene,and then oxidized into nitrobenzene;hydrogen in para-position of amino group was replaced by hydroxyl,then turned into iminophenone and benzoquinone;finally,nitrobenzene and benzoquinone were degraded into CO_2 and H_2O.
引文
[1]HUANG Y F,HUANG Y H.Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(Ⅱ,Ⅲ)two-stage oxidation process[J].Journal of Hazardous Materials,2009,162(2/3):1211-1216.
    [2]ZHAO Z,ZHAO J,YANG C.Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system[J].Chemical Engineering Journal,2017,327:481-489.
    [3]王莹,魏成耀,黄天寅,等.氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7[J].中国环境科学,2017,37(7):2583-2590.
    [4]ANIPSITAKIS G P,DIONYSIOU D D.Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J].Environmental Science&Technology,2003,37(20):4790-4797.
    [5]杨晓奕,蒋展鹏,师绍琪,等.单相厌氧与两相厌氧处理干法腈纶废水的研究[J].工业用水与废水,2002,33(2):21-24.
    [6]张圆春,汤须崇,薛秀玲,等.低成本铁碳复合非均相Fenton催化剂制备及其性能[J].华侨大学学报(自然科学版),2017,38(4):515-520.
    [7]廖辉伟,穆兰,宋玉亮,等.纳米CuFe2O4催化硫酸铜热分解及机理研究[J].中国粉体技术,2009,15(3):34-37.
    [8]常影,姜宁,雷抗,等.二价铁活化过硫酸盐去除水中苯胺[J].世界地质,2014,33(3):702-707.
    [9]丁耀彬.基于过渡金属氧化物催化活化过一硫酸盐高级氧化方法及其在有机污染物降解中的应用[D].武汉:华中科技大学,2013.
    [10]刘德辉,代飞飞,聂丹丹.气相色谱-质谱法测定水中19种苯胺类化合物[J].中国城乡企业卫生,2016(5):66-69.
    [11]蔡乃才,王亚平.光催化与光化学联合降解苯胺[J].应用化学,1999,16(2):87-89.
    [12]何建波,张鑫,魏凤玉,等.TiO2薄膜晶相组成对苯胺光催化降解的影响[J].应用化学,1999,16(5):57-60.
    [13]KAHNG H Y,KUKOR J J,OH K H.Characterization of strain HY99,a novel microorganism capable of aerobic and anaerobic degradation of aniline[J].FEMS Microbiology Letters,2000,190(2):215-221.
    [14]谢晓芳.基于过硫酸盐活化硫酸自由基高级氧化技术降解废水中苯胺的研究[D].广州:华南理工大学,2012.
    [15]胡玉方,冯岐,蒲小琴,等.铁酸铜活化过硫酸氢钾氧化降解油田钻井废水[J].工业用水与废水,2017,48(4):28-32.
    [16]黄晓东,徐清艳.纳米铁酸铜催化过硫酸盐降解酸性红FRL[J].环境工程学报,2016,10(5):2435-2439.
    [17]FAUNGNAWAKIJ K,TANAKA Y,SHIMODA N,et al.Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina[J].Applied Catalysis B:Environmental,2007,74(1/2):144-151.
    [18]SHIH K,WHITE T,LECKIE J O.Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior[J].Environmental Science&Technolog,2006,40(17):5520-5526.
    [19]LI J,REN Y,JI F,et al.Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles[J].Chemical Engineering Journal,2017,324:63-73.
    [20]于波,张平,张磊,等.活性氧缺位铁酸铜的制备及其在热化学分解水制氢中的应用[J].中国科学:B辑化学,2008,38(6):550-556.
    [21]洪伟良,刘剑洪,田德余,等.纳米铁酸铜的制备及对RDX热分解的催化作用[J].推进技术,2003,24(6):560-562.
    [22]PENG H J,XU L Y,ZHANG W,et al.Different kinds of persulfate activation with base for the oxidation and mechanism of BDE209in a spiked soil system[J].Science of the Total Environment,2017,574:307-313.
    [23]吴玉婷,马福俊,谷庆宝,等.过硫酸钾氧化去除水和土壤中的苯胺[J].环境工程技术学报,2015,5(4):259-264.
    [24]DO S,KWON Y,KONG S.Effect of metal oxides on the reactivity of persulfate/Fe(Ⅱ)in the remediation of diesel-contaminated soil and sand[J].Journal of Hazardous Materials,2010,182(1/2/3):933-936.
    [25]LIANG C,WANG Z S,BRUELL C J.Influence of pH on persulfate oxidation of TCE at ambient temperatures[J].Chemosphere,2007,66(1):106-113.
    [26]LIANG C,SU H W.Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J].Industrial&Engineering Chemistry Research,2009,48(11):472-475.
    [27]NG Y S,GUPTA B S,HASHIM M A.Stability and performance enhancements of Electrokinetic-Fenton soil remediation[J].Reviews in Environmental Science&Bio/Technology,2014,13(3):251-263.
    [28]EBERSON L.Electron transfer reactions in organic chemistry[J].Advances in Physical Organic Chemistry,1982,18:79-185.
    [29]SAULEDA R,BRILLAS E.Mineralization of aniline and4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+and UVA light[J].Applied Catalysis B:Environmental,2001,29(2):135-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700