铝锆碳质转炉挡渣闸阀开发与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and Application of Al-2O_3-ZrO_2-C Converter Slide Gates
  • 作者:郁书中 ; 廖宁 ; 李亚伟 ; 彭学峰 ; 桑绍柏 ; 崔任渠
  • 英文作者:YU Shu-zhong;LIAO Ning;LI Ya-wei;PENG Xue-feng;SANG Shao-bai;CUI Ren-qu;Ruitai Masteel New Material Technology Co.,Ltd.;State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology;
  • 关键词:转炉挡渣闸阀 ; 膨胀石墨 ; 力学性能 ; 抗热震性
  • 英文关键词:converter slide gate;;expanded graphite;;mechanical property;;thermal shock resistance
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:瑞泰马钢新材料科技有限公司;武汉科技大学省部共建耐火材料与冶金国家重点实验室;
  • 出版日期:2018-01-15
  • 出版单位:硅酸盐通报
  • 年:2018
  • 期:v.37;No.256
  • 语种:中文;
  • 页:GSYT201801061
  • 页数:6
  • CN:01
  • ISSN:11-5440/TQ
  • 分类号:368-373
摘要
主要研究了膨胀石墨含量对低碳铝碳耐火材料的显微结构,力学性能和抗热震性的影响;在此基础上选择合适含量的膨胀石墨引入铝锆碳质转炉挡渣闸阀中,考察了转炉挡渣闸阀的现场服役行为。结果表明:膨胀石墨引入铝碳耐火材料中有助于促进碳化硅晶须的生长;正是由于碳化硅晶须以及膨胀石墨自身的强韧化作用,铝碳耐火材料热震后的残余强度由空白样的4.87 MPa提高至9.31 MPa,残余强度保持率由38%提高至54%。工业试验结果显示引入0.5wt%膨胀石墨的铝锆碳质转炉挡渣闸阀的平均使用寿命较传统滑板提高0.77次。
        The effects of contents of expanded graphite on the microstructure,mechanical properties and thermal shock resistance of low-carbon containing Al_2O_3-C refractories were firstly investigated.Accordingly,the field service behavior of Al_2O_3-C slide gates with proper content of expanded graphite addition was further evaluated.The results show that expanded graphite could stimulate the growth of Si C whiskers under high temperature.Attributing to the synergic strengthening and toughening effects of Si C whiskers and expanded graphite,the residual strength increases from 4.87 MPa to 9.31 MPa,correspondingly,the residual strength ratio varies from 38% to 54%.Also,the pilot test reveals that the average service lives of 0.5wt% expanded graphite containing Al_2O_3-ZrO_2-C slide gates are 0.77 times longer than the traditional ones.
引文
[1]苗西跃.新型转炉挡渣技术的应用[J].耐火材料,2014,48(1):79-80.
    [2]谭枫.国内转炉挡渣技术的探讨[J].黑龙江冶金,2015,35(1):34-35.
    [3]于钦洋,陆永刚.300t转炉闸阀式挡渣技术的应用[J].炼钢,2010,26(3):15-17.
    [4]蒋欢杰,吴燕萍,颜飞.滑板挡渣技术在转炉出钢中的应用[J].工业加热,2015(4):71-73.
    [5]Tamura S,Ochiai T,Takanaga S,et al.Nano-tech refractories-2:the development of the nano structural matrix to Mg O-C bricks[C]//UNITECR'3Congress,Japan,2003:521.
    [6]Mertke A,Aneziris C G.The reduction of carbon content in the system Al2O3-C with the aid of nanoparticles and functional metallic additives[C]//UNITECR'15 Congress,Austria,2015:77.
    [7]Li H X,Liu G Q,Wu X X,et al.Improvement of thermal shock resistance of low carbon carbon-containing refractories[C]//UNITECR'15Congress,Austria,2015:112.
    [8]Bag M,Adak S,Sarkar R.Study on low carbon containing Mg O-C refractory:Use of nano carbon[J].Ceramics International,2012,38(3):2339-2346.
    [9]Luo M,Li Y W,Jin S L,et al.Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes[J].Materials Science&Engineering A,2012,548(12):134-141.
    [10]Luo M,Li Y W,Sang S B,et al.In situ formation of carbon nanotubes and ceramic whiskers in Al2O3-C refractories with addition of Ni-catalyzed phenolic resin[J].Materials Science&Engineering A,2012,558(24):533-542
    [11]Zhu T B,Li Y W,Luo M,et al.Microstructure and mechanical properties of Mg O-C refractories containing graphite oxide nanosheets(GONs)[J].Ceramics International,2013,39(4):4529-4537.
    [12]Wang Q H,Li Y W,Luo M,et al.Strengthening mechanism of graphene oxide nanosheets for Al2O3-C refractories[J].Ceramics International,2014,1(40):163-172.
    [13]Li Y W,Liao N,Sang S B,et al.Microstructure and mechanical properties of Al2O3-C refractories using carbon black and multi-walled carbon nanotubes as carbon sources[J].Journal of Ceramic Science&Technology,2015,6(3):207-213.
    [14]Liao N,Li Y W,Jin S L,et al.Enhanced mechanical performance of Al2O3-C refractories with nano carbon black and in-situ formed multi-walled carbon nanotubes(MWCNTs)[J].Journal of the European Ceramic Society,2015,36(3):867-874.
    [15]Mahato S,Behera S K.Oxidation resistance and microstructural evolution in Mg O-C refractories with expanded graphite[J].Ceramics International,2016,42(6):7611-7619.
    [16]Behera S K,Mishra B.Strengthening of Al2O3-C slide gate plate refractories with expanded graphite[J].Ceramics International,2015,41(3):4254-4259.
    [17]Wang Q H,Li Y W,Sang S B,et al.Effect of the reactivity and porous structure of expanded graphite(EG)on microstructure and properties of Al2O3-C refractories[J].Journal of Alloys and Compounds,2015,645:388-97.
    [18]Zhu T B,Li Y W,Jin S L,et al.Microstructure and mechanical properties of Mg O-C refractories containing expanded graphite[J].Ceramics International,2013,39:4529-37.
    [19]廖宁,李亚伟,桑绍柏.添加硅和硅微粉氧化铝-碳纳米管耐火材料制备与性能[J].硅酸盐学报,2017,45(3):433-440.
    [20]Zhu T,Li Y,Sang S,et al.Fracture behavior of low carbon Mg O-C refractories using the wedge splitting test[J].Journal of the European Ceramic Society,2016,37(4):1789-1797.
    [21]Harmuth H,Manhart C.Fractographic Investigations of ordinary ceramic refractory materials with reduced brittleness[J].Key Engineering Materials,2009,409:209-215.
    [22]Jin S,Gruber D,Harmuth H.Determination of Young's modulus,fracture energy and tensile strength of refractories by inverse estimation of a wedge splitting procedure[J].Engineering Fracture Mechanics,2014,116:228-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700