含碳铝酸钙粉体的燃烧合成及其微观表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of Calcium Aluminate Containing Carbon Powder by Combustion Method and Its Microstructural Characterization
  • 作者:肖国庆 ; 石佳佳 ; 丁冬海
  • 英文作者:XIAO Guoqing;SHI Jiajia;DING Donghai;College of Materials and Mineral Resources, Xi'an University of Architecture and Technology;Postdoctoral Mobile Research Station of Materials Science and Engineering, Xi'an University of Architecture and Technology;State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co.,Ltd.;
  • 关键词:含碳铝酸钙粉体 ; 燃烧合成 ; 有机酸钙
  • 英文关键词:carbon containing calcium aluminate powders;;combustion synthesis;;organic acid calcium
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:西安建筑科技大学材料与矿资学院;西安建筑科技大学材料科学与工程博士后流动站;中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室;
  • 出版日期:2018-03-15 13:21
  • 出版单位:硅酸盐学报
  • 年:2018
  • 期:v.46;No.351
  • 基金:国家自然科学基金(51502236,51572212,51772236);; 中国博士后基金(2016M602940XB);; 先进耐火材料国家重点实验室开放课题资助
  • 语种:中文;
  • 页:GXYB201806014
  • 页数:8
  • CN:06
  • ISSN:11-2310/TQ
  • 分类号:81-88
摘要
以CaO_2、Al、Al_2O_3、有机酸钙(草酸钙、硬脂酸钙、葡萄糖酸钙、柠檬酸钙)为原料,FeC_2O_4为催化剂,通过燃烧合成法制备含碳铝酸钙粉体,采用X射线衍射仪、Raman光谱仪、碳硫仪、扫描电子显微镜、能谱仪和高分辨透射电子显微镜对粉体进行了表征,研究了有机酸钙和FeC_2O_4掺量对粉体物相组成、碳含量、碳有序度的影响。结果表明:燃烧产物主要物相组成为CaO·Al_2O_3(CA)和CaO·2Al_2O_3(CA_2),其中,葡萄糖酸钙原料体系、柠檬酸钙原料体系随有机酸钙掺量的增加,产物中出现了12CaO·7Al_2O_3(C_(12)A_7)相,CA_2相减少。制备的铝酸钙粉体中存在自由碳,柠檬酸钙原料体系碳含量随柠檬酸钙掺量增加由0.32%(质量分数)增加到0.40%,葡萄糖酸钙原料体系随葡萄糖酸钙掺量增加碳含量先增加后降低,其中碳含量最高为0.80%。圆圈状晶格条纹的碳存在于块状结构的铝酸钙晶粒边沿或被铝酸钙晶粒包裹,其晶面间距为0.33 nm,与碳的(002)晶面一致。铝酸钙晶体具有横向晶格条纹,晶面间距约为0.73 nm,与CA的(002)晶面一致。在葡萄糖酸钙掺量3%(摩尔分数)的配比基础上加入不同量的FeC_2O_4,随其掺量的增加,碳的有序度呈现先增加后降低的趋势,FeC_2O_4掺量为0.75%时碳有序度最高。
        Calcium aluminate powder containing carbon was prepared with CaO_2, Al, Al_2O_3 and organic acid calcium(calcium oxalate(CaC_2O_4), calcium stearate(CaC_(36)H_(70)O_4), calcium gluconate(CaC_(12)H_(22)O_(14)), calcium citrate(Ca_3C_(12)H_(10)O_(14)) as starting materials by a combustion synthesis method. The resultant powder was characterized by X-ray diffraction, Raman spectroscopy, carbon sulfur measurement, scanning electron microscopy and energy dispersive spectroscopy, and high–resolution transmission electron microscopy, respectively. The effects of organic acid calcium and ferrous oxalate with different addition amounts on the phase composition, the content and order of carbon were investigated. The XRD patterns confirm that the main phase compositions of produced power are CaO·Al_2O_3 and CaO·2 Al_2O_3, while 12 CaO·7 Al_2O_3 is an intermediate phase when organic acid calcium in calcium gluconate and calcium citrate system increases. Free carbon exists in the powder, which increases from 0.32%(mass fraction) to 0.40% with the increase of calcium citrate content, however, it firstly increases and then decreases in calcium gluconate system, and the maximum carbon content is 0.80%. The carbon with the circular lattice stripe exists in calcium aluminate powder. Acorrding to the selected area of the diffraction patterns, the lattice planes, including(002), can be calculated to be the lattice spacing of 0.33 nm of carbon. Calcium aluminate crystal with the transverse lattices fringes, and the spacing of the crystal faces is 0.73 nm, which can be assigned to the(002) lattice planes of CaO·Al_2O_3 crystal. The order of carbon firstly increases and then decreases with the increase of amount of ferrous oxalate into the starting materials containing calcium gluconate of 3%(mole fraction), and becomes the maximum when FeC_2O_4 content is 0.75%.
引文
[1]LEE W E,VIEIRA W,ZHANG S,et al.Castable refractory concretes[J].Inter Mater Rev,2001,46(3):145–165.
    [2]ZHANG S,LEE W E.Carbon containing castables:current status and future prospects[J].British Ceram Transact,2002,101(1):1–8.
    [3]RIGAUD M,PALCO S,ZHOU N.Alumina and magnesia-based castables containing graphite:comparison[C]//UNITECR'01.Proc.Unified Int.Tech.Conf.on Refractories.7 th Biennial Worldwide Congress.2001,1:336–349.
    [4]KAWASAKI H,YOSHITOMI Y,SHIKANO H,et al.Surface treatment of graphite for monolithic refractories[J].Taikabutsu Overseas,1991,11(4):46–47.
    [5]LIU X,ZHANG S.Low-temperature preparation of titanium carbide coating on graphite flakes from molten salts[J].J Am Ceram Soc,2008,91(2):667–670.
    [6]ANSAR S A,BHATTACHARYA S,DUTTA S,et al.Development of mullite and spinel coatings on graphite for improved water-wettability and oxidation resistance[J].Ceram Inter,2010,36(6):1837–1844.
    [7]DUTTA S,DAS P,DAS A,et al.Significant improvement of refractoriness of Al2O3–C castables containing calcium aluminate nano-coatings on graphite[J].Ceram Inter,2014,40:4407–4414.
    [8]MUKHOPADHYAY S.Nanoscale calcium aluminate coated graphite for improved performance of alumina based monolithic refractory composite[J].Mater Res Bull,2013,48:2583–2588.
    [9]JEONG Namjo,HAN Seong Ok,KIM Heeyeon,et al.Synthesis of calcium aluminnate nanoflakes and nanochains form woodfy biomass[J].Mater Charact,2015,110:68–76.
    [10]SEVILLA Marta,FUERTES Antonio B.A general and facile synthesis strategy towards highly porous carbons:carbonization of organic salts[J].J Mater Chem A,2013,1:13738–13741.
    [11]马建民,毛玉华.一种多孔石墨烯及其制备方法[P].CN104108709A.2014–10–22.MA Jianmin,MAO Yuhua.A porous graphene and its preparation method(in Chinese)[P].CN 104108709A.2014–10–22.
    [12]朱珍平,崔会娟,郑剑锋,等.一种由有机酸金属盐合成石墨烯的方法[P].CN 103332688A.2013–10–02.ZHU Zhenping,CUI Huijuan,ZHENG Jianfeng,et al.A method to synthesizing graphene from organic acid metal salts(in Chinese)[P].CN 103332688A.2013–10–02.
    [13]朱珍平,崔会娟,郑剑锋,等.一种固体有机酸合成石墨烯的方法[P].CN 103601178A.2014–02–06.ZHU Zhenping,CUI Huijuan,ZHENG Jianfeng,et al.A method for the synthesis of graphene by solid organic acids(in Chinese)[P].CN103601178A.2014–02–06.
    [14]杨守磊,肖国庆,丁冬海,等.Ca O–Al–Al2O3–Ca CO3–O2体系燃烧合成铝酸钙热力学研究[J].硅酸盐学报,2016,44(6):908–913.YANG Shoulei,XIAO Guoqing,DING Donghai,et al.J Chin Ceram Soc,2016,44(6):908–913.
    [15]刘科燕,肖国庆,丁冬海,等.Al2O3含量对燃烧合成铝酸钙粉体物相组成的影响[J].硅酸盐通报,2016,35(5):1438–1442.LIU Keyan,XIAO Guoqing,DING Donghai,et al.Bull Chin Ceram Soc(in Chinese),2016,35(5):1438–1442.
    [16]FUMO D A,MORELLI M R,SEGADAES A M,Combustion synthesis of calcium aluminates[J].Mater Res Bull,1996,31(10):1243–1255.
    [17]ZAWRAH Mahmoud F,SHEHATA Adel B,KISHAR Esam A,et al.Synthesis,hydration and sintering of calcium aluminate nanopowder for advanced applications[J].C R Chim,2010,14:611–618.
    [18]王震遐,余礼平,马余刚,等.超声波处理高序石墨合成碳纳米结构[J].物理学报,2002,51(7):1571–1574.WANG Zhenxia,YU Liping,MA Yu Gang,et al.Acta Phys Sin(in Chinese),2002,51(7):1571–1574.
    [19]张薇薇.洋葱状碳纳米球的高压结构相变研究[D].长春:吉林大学,2016.ZHANG Weiwei.High pressure study on the phase transitions of onion-like carbon nanospheres[D].Changchun:Jilin University,2016.
    [20]BYSTRZEJEWSKI M,RUMMELI M H,GEMMING T,et al.Catalyst–free synthesis of onion-like carbon nanoparticles[J].New Carbon Mater,25(1):1–8.
    [21]倪月娥,柯昌明,韩兵强,等.纳米晶尖晶石–碳复合粉体的机械合金化法制备[J].硅酸盐学报,2012,40(1):137–144.NI Yuee,KE Changming,HAN Bingqiang,et al.J Chin Ceram Soc,2012,40(1):137–144.
    [22]高云,李凌云,谭平恒,等.拉曼光谱在碳纳米管聚合物复合材料中的应用[J].科学通报,2015,55(22):2165–2176.GAO Yun,LI Lengyun,TAN Pinghuan,et al.Chin Sci Bull(in Chinese),2010,55(22):2165–2176.
    [23]FERRARI Andrea C.Raman spectroscopy of graphene and graphite:Disorder,electron–phonon coupling,doping and nonadiabatic Effects[J].Solid State Commun,2007,143(1):47–57.
    [24]吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014,72:301–308.WU Juanxia,XU Hua,ZHANG Jin.Acta Chim Sin(in Chinese),2014,72:301–308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700