硅基片上的中波红外铝线栅偏振器设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of a Mid-Infrared Al Wire-Grid Polarizer on Si Substrates
  • 作者:孔园园 ; 罗海瀚 ; 刘定权
  • 英文作者:Kong Yuanyuan;Luo Haihan;Liu Dingquan;Shanghai Institute of Technical Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:线栅偏振器 ; 硅(Si)基片 ; 介质层 ; 铝(Al)线栅 ; 消光比
  • 英文关键词:wire-grid polarizer;;Si substrate;;dielectric layer;;Al wire-grid;;extinction ratio
  • 中文刊名:BDTQ
  • 英文刊名:Micronanoelectronic Technology
  • 机构:中国科学院上海技术物理研究所;中国科学院大学;
  • 出版日期:2018-06-14 17:08
  • 出版单位:微纳电子技术
  • 年:2018
  • 期:v.55;No.494
  • 基金:国家自然科学基金资助项目(61675223)
  • 语种:中文;
  • 页:BDTQ201807001
  • 页数:7
  • CN:07
  • ISSN:13-1314/TN
  • 分类号:4-10
摘要
设计了一种Si基片上的Al线栅偏振器,在Al线栅和Si基片间引入一层低折射率SiO介质层,适用于3.0~5.0μm的中波红外波段。采用有限时域差分(FDTD)方法,对SiO介质层和金属线栅材料(Al,Au,Ag,Cu和Rh)分别进行了优化。SiO介质层的引入削弱了Al线栅和Si基片之间界面上激发的表面等离子体激元,横磁(TM)偏振光的透过率提高,横电(TE)偏振光的反射增强,消光比上升。对Al,Au,Ag,Cu和Rh五种金属线栅材料分析表明,Al是最合适的材料。当SiO介质层厚度为300 nm、线栅周期为400 nm和占空比为0.5时,Al线栅偏振器在4.0μm波长处的TM偏振光的透过率达到94.8%,消光比为28.3 dB,在3.0~5.0μm波段具有良好的偏振性能。
        An Al wire-grid polarizer for the mid-infrared band of 3.0-5.0μm was designed with a SiO dielectric layer with low refractive index inserted between Al wire-grid and Si substrate.The SiO dielectric layer and metal wire-grid materials(Al,Au,Ag,Cu and Rh)were optimized by the finite-difference time-domain(FDTD)method.The surface plasmon polaritons at the interface between Al wire-grid and Si substrate are weakened by the introduction of the SiO dielectric layer,leading to the improvement in the transmittance of transverse magnetic(TM)polarized light and the increases of the reflection of transverse electric(TE)polarized light and extinction ratio.The analyses of different metal wire-grid materials(Al,Au,Ag,Cu and Rh)show that Al is the most appropriate material.When the thickness of the SiO dielectric layer is 300 nm,the period of the wire-grid is 400 nm and the duty cycle is 0.5,the TM polarized light transmittance and extinction ratio of the Al wire-grid polarizer are 94.8% and 28.3 dB at the wavelength of4.0μm,respectively.The Al wire-grid polarizer has excellent polarization performance in the wavelength range of 3.0-5.0μm.
引文
[1]TYO J S,GOLDSTEIN D L,CHENAULT D B,et al.Review of passive imaging polarimetry for remote sensing applications[J].Applied Optics,2006,445(22):5453-5469.
    [2]康果果,谭峤峰,陈伟力,等.亚波长金属线栅的设计、制备及偏振成像试验研究[J].物理学报,2011,60(1):014218-1-014218-7.
    [3]LEE C,SIM E,KIM D.Blazed wire-grid polarizer for plasmon-enhanced polarization extinction:design and analysis[J].Optics Express,2017,25(7):8098-8107.
    [4]YAMADA I,ISHIHARA Y.Fabrication of infrared wire-grid polarizer by sol-gel method and soft imprint llithography[J].Applied Physics Express,2016,9(5):052202-1-052202-4.
    [5]廖延彪.偏振光学[M].北京:科学出版社,2003:201-204.
    [6]周云,申溯,叶燕,等.带有高折射率介质层的金属光栅偏振器特性的研究[J].光学学报,2010,30(4):1158-1161.
    [7]YASIN E,HARUN H S,CHRISTIAN D,et al.Bilayer Al wire-grids as broadband and high performance polarizers[J].Optics Express,2006,14(6):2323-2334.
    [8]LIN Y,HU J P,CAO B,et al.Design and fabrication of silicon-based linear polarizer with multilayer nanogratings operating in infrared region[J].Optical Engineering,2017,56(1):017111-1-017111-6.
    [9]WANG J J,ZHANG W,DENG X,et al.High-performance nanowire-grid polarizers[J].Optics Letters,2005,30(2):195-197.
    [10]MENG F T,CHU J K,HAN Z T,et al.The design of the sub-wavelength wire-grid polarizer[C]//Proceedings of the7th IEEE International Conference on Nanotechnology.HongKong,China,2007:942-946.
    [11]YAMADA I,FUKUMI K,NISHII J,et al.Infrared wiregrid polarizer with Y2O3ceramic substrate[J].Optics Letters,2010,35(18):3111-3113.
    [12]王瑞.亚波长微偏振光栅探测器的研制方法及其偏振特性研究[D].上海:中国科学院上海技术物理研究所,2016:35-37.
    [13]YANG Z Y,ZHAO M,DAI N L,et al.Broadband polarizers using dual-layer metallic nanowire grids[J].IEEE Photonics Technology Letters,2008,20(9):697-699.
    [14]YANG Z Y,LU Y F.Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions[J].Optics Express,2007,15(15):9510-9519.
    [15]PALIK E D.Handbook of optical constants of solids[M].San Diego:Academic Press,1998:275-351.
    [16]唐晋发,顾培夫,刘旭,等.现代光学薄膜技术[M].杭州:浙江大学出版社,2006:61-63.
    [17]WANG R,LI T,SHAO X M,et al.The simulation of localized surface plasmon and surface plasmon polariton in wire grid polarizer integrated on InP substrate for InGaAs sensor[J].AIP Advances,2015,5(7):077128-1-077128-5.
    [18]MOTOGAITO A,NAKAJIMA T,MIYAKE H,et al.Excitation mechanism of surface plasmon polaritons in a double layer wire grid structure[J].Applied Physics:A,2017,123(729):1-5.
    [19]GRAY S K.Theory and modeling of plasmonic structures[J].Journal of Physical Chemistry:C,2013,117(5):1983-1994.
    [20]CHENG P H,LI X,SHAO X M,et al.Role of dielectric film in metal grating for improved polarized transmittance in0.9-1.7μm range[J].Japanese Journal of Applied Physics,2015,54(10):102201-1-102201-5.
    [21]JING X F,MA J Y,LIU S J,et al.Analysis and design of transmittance for an antireflective surface microstructure[J].Optics Express,2009,17(18):16119-16134.
    [22]ONO Y,KIMURA Y,OHTA Y,et al.Antireflection effect in ultrahigh spatial-frequency holographic relief gratings[J].Applied Optics,1987,26(6):1142-1146.
    [23]颜树华.衍射微光学设计[M].北京:国防工业出版社,2011:163-166.
    [24]NAIK G V,SHALAEV V M,BOLTASSEVA A.Alternative plasmonic materials:beyond gold and silver[J].Advanced Materials,2013,25(24):3264-3294.
    [25]ALEXANDRA B,HARRY A A.Low-loss plasmonic metamaterials[J].Science,2011,331(6015):290-291.
    [26]薛钰芝,GREEN M A.Al/Al2O3多层膜的表面和界面的分析研究[J].真空科学与技术,2002,22(1):73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700