曝气灌溉条件下土壤N_2O排放特征及影响因子分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and influencing factors of N_2O emission from incubated soil under aerated irrigation
  • 作者:雷宏军 ; 刘欢 ; 臧明 ; 潘红卫 ; 陈德立
  • 英文作者:LEI Hong-jun;LIU Huan;ZANG Ming;PAN Hong-wei;CHEN De-li;School of Water Conservancy, North China University of Water Conservancy and Electric Power;Faculty of Land and Food Resources, University of Melbourne;
  • 关键词:曝气灌溉 ; N_2O排放 ; 溶解氧 ; 氧化还原电位 ; 基因 ; 拷贝数 ; 影响因子
  • 英文关键词:aerated irrigation;;N_2O emission;;dissolved oxygen;;redox potential;;gene;;copy numbers;;influencing factor
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:华北水利水电大学水利学院;墨尔本大学粮食与土地资源学院;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(U1504512,51779093);; 河南省科技创新人才项目(174100510021);; 华北水利水电大学研究生创新课题(YK2017-02);; 中原科技创新领军人才项目(194200510008)
  • 语种:中文;
  • 页:ZGHJ201905046
  • 页数:8
  • CN:05
  • ISSN:11-2201/X
  • 分类号:325-332
摘要
为了明确曝气灌溉下土壤N_2O排放特征及主要影响因子,实验设置了2个灌水量(70%和90%田间持水量)和2个增氧水平(5,40mg/L),采用静态箱法和q PCR技术对土壤N_2O通量及土壤关键功能基因进行测定,研究不同灌水量和增氧水平对土壤充水孔隙度、溶解氧、氧化还原电位(Eh)、矿质氮及氨氧化古菌(AOA)、氨氧化细菌(AOB)和反硝化基因(narG和nosZ)的影响.结果表明:培养过程中,各处理N_2O排放通量均呈现先增加后降低的趋势,于灌溉后1d达到峰值;曝气量和灌水量的增加可显著增加土壤N_2O的排放通量和排放峰值.灌溉造成土壤含水量增加的同时,降低了土壤溶解氧和Eh;曝气可提高土壤溶解氧和Eh,改善土壤通气性(P<0.05),而对土壤充水孔隙度无显著影响.土壤充水孔隙度、Eh、NO_3~--N含量是曝气灌溉下驱动土壤N_2O排放的主要理化因子.曝气显著增加了AOA的基因拷贝数,且N_2O排放与AOA的基因拷贝数呈显著正相关关系(P<0.05).研究结果为进一步明确曝气灌溉对土壤N_2O排放的影响机制和曝气灌溉模式下农田N_2O排放管理提供支撑.
        To clarify the characteristics of soil N_2O emission and identify the main factors under aerated irrigation(AI), the soil culture experiments were conducted at 2 irrigation levels with upper soil moisture limit as 70% and 90% of field capacity and 2 dissolved oxygen(DO) levels at 5 and 40 mg/L. Soil N_2 O emission fluxes were monitored using static chamber-gas chromatography method and the copy number of nitrification and denitrification gene were determined using the real-time quantitative polymerase chain reaction(qPCR) technique. In addition, the main factors on soil N_2 O fluxes were analyzed, including soil water filling porosity(WFPS), DO, redox potential(Eh), mineral nitrogen content(NO_3~--N and NH_4~+-N), as well as the abundance of soil ammonia-oxidizing bacterial(AOB) and ammonia-oxidizing archaea(AOA) and denitrifier genes(narG and nosZ). Results showed that soil N_2 O flux increased from the beginning, peaked at 1 d after irrigation, dropped in the following 3 days, and then stabilized. An increase of aeration and irrigation amount resulted in the increase of average values and peak values of soil N_2O fluxes. Irrigation caused an increase of WFPS, while a decrease of soil DO and Eh. Aeration treatments increased soil DO concentration and Eh(P<0.05), improved soil aeration. However, aeration treatments showed no significant impact on WFPS. The WFPS, Eh and NO3--N content were the main physical, chemical influencing factors driving soil N_2O emission under AI. The AI significantly affected AOA copy numbers. In addition, soil N_2 O fluxes were significantly correlated with AOA copy number(P<0.05). The results could provide scientific support for the influential mechanism of AI on soil N_2O and the farmland N_2 O emission management.
引文
[1] Stocker T, Qin D, Plattner Q et al. IPCC, 2013:Climate Change 2013:The Physical Science Basis. Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J].Computational Geometry,2013,18(2):95-123.
    [2] Delgado J A, Mosier A R. Mitigation alternatives to decrease nitrousoxides emissions and urea-nitrogen loss and their effect on methane flux[J]. Journal of Environmental Quality, 1996,25(5):1105-1 111.
    [3] Smith P, Martino D, Cai Z, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions Biological Sciences, 2008,363(1492):789-813.
    [4] Nishina K, Takenaka C, Ishizuka S. Relationship between N20 and NO emission potentials and soil properties in Japanese forest soils[J].Soil science and plant nutrition,2009,55(1):203-214.
    [5] Singh B K, Bardgett R D, Smith P, et al. Microorganisms and climate change:terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology, 2010,8(11):779.
    [6]贺纪正,张丽梅.土壤氮素转化的关键微生物过程及机制[J].微生物学通报,2013,40(1):98-108.He J, Zhang L. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China, 2013,40(1):98-108.
    [7] Han B, Ye X, Li W, et al. The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields[J]. Journal of Soils&Sediments, 2017,17(10):1-12.
    [8] Martins C S C, Macdonald C A, Anderson I C, et al. Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dryland ecosystems[J]. Soil Biology&Biochemistry, 2016,100:21-32.
    [9] Godde M, Conrad R. Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture[J]. Biology&Fertility of Soils,2000,32(2):120-128.
    [10] Wang L,Sheng R, Yang H, et al. Stimulatory effect of exogenous nitrate on soil denitrifiers and denitrifying activities in submerged paddy soil[J]. Geoderma, 2017,286:64-72.
    [11] Bhattarai S P, Midmore D J, Su N. Sustainable irrigation to balance supply of soil water, oxygen, nutrients and agro-chemicals[M].Biodiversity, biofuels, agroforestry and conservation agriculture.Springer, Dordrecht, 2010:253-286.
    [12]雷宏军,冯凯,张振华,等.河南3种典型土壤曝气灌溉草莓生长与品质[J].排灌机械工程学报,2017,35(2):158-164.Lei H, Feng K, Zhang Z,et al. Growth and quality of potted strawberry under aerated drip irrigation in the three typical soils in Henan Province[J]. Journal of drainage and irrigation machinery engineering,2017,35(2):158-164.
    [13] Bhattarai S P, Midmore D J, Pendergast L. Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols[J]. Irrigation Science, 2008,26(5):439.
    [14] Ben-Noah I, Friedman S P. Aeration of clayey soils by injecting air through subsurface drippers:Lysimetric and field experiments[J].Agricultural Water Management, 2016,176:222-233.
    [15]雷宏军,胡世国,潘红卫,等.土壤通气性与加氧灌溉研究进展[J].土壤学报,2017,54(2):297-308.Lei H, Hu S, Pan H, et al. Advancement in research on soil aeration and oxygation[J]. Acta Pedologica Sinica,2017,54(2):297-308.
    [16]赵丰云,杨湘,董明明,等.加气灌溉改善干旱区葡萄根际土壤化学特性及细菌群落结构[J].农业工程学报,2017,33(22):119-126.Zhao F, Yang X, Dong M, et al. Aeration irrigation improving graperhizosphere soil chemical properties and bacterial community structure in arid area[J]. Transaction of the Chinese Society of Agricultural Engineering, 2017,33(22):119-126.
    [17] Pendergast L, Bhattarai S P, Midmore D J. Benefits of oxygation of subsurface drip-irrigation water for cotton in a Vertosol[J]. Crop&Pasture Science, 2013,64(11/12):1171-1181.
    [18]李元,牛文全,张明智,等.加气灌溉对大棚甜瓜土壤酶活性与微生物数量的影响[J].农业机械学报,2015,46(8):121-129.Li Y, Niu W, Zhang M, et al. Effects of aeration on rhizosphere soil enzyme activities and soil microbes for muskmelon in plastic greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(8):121-129.
    [19]雷宏军,臧明,张振华,等.循环曝气压力与活性剂浓度对滴灌带水气传输的影响[J].农业工程学报,2014,30(22):63-69.Lei H, Zang M, Zhang Z, et al. Impact of working pressure and surfactant concentration on air-water transmission in drip irrigation tape under cycle aeration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(22):63-69.
    [20]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:106-193.Lu R. Soil argrochemistry analysis protocoes[M]. Beijing:China Agriculture Science Press,2000:106-193.
    [21]陈慧,侯会静,蔡焕杰,等.加气灌溉温室番茄地土壤N20排放特征[J].农业工程学报,2016,(3):111-117.Chen H, Hou H, Cai H, et al. Soil N20 emission characteristics of greenhouse tomato fields under aerated irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,(3):111-117.
    [22] Chen Z, Luo X, Hu R, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J]. Microbial ecology,2010,60(4):850-861.
    [23] Sahan E,Muyzer G, Diversity and spatio-temporal distribution of ammoniaoxidizing Archaea and Bacteria in sediments of the Westerschelde estuary[J]. Fems Microbiology Ecology, 2008,64(2):175-186.
    [24] Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied&Environmental Microbiology, 1997,63(12):4704.
    [25] Wlodarczyk T, Szarlip P, Koziel W, et al. Effect of long storage and soil type on the actual denitrification and denitrification capacity to N20 formation[J]. International Agrophysics, 2014,28(3):371-381.
    [26] Dobbie K E,Smith K A. Nitrous oxide emission factors for agricultural soils in Great Britain:the impact of soil water-filled pore space and other controlling variables[J]. Global Change Biology, 2003,9(2):204-218.
    [27] Peng S, Hou H, Xu J, et al. Nitrous oxide emissions from paddy fields under different water managements in southeast China[J]. Paddy&Water Environment,2011,9(4):403-411.
    [28] Case S D C, Mcnamara N P, Reay D S, et al. The effect of biochar addition on N2O and CO2, emissions from a sandy loam soil-the roleof soil aeration[J]. Soil Biology&Biochemistry, 2012,51(3):125-134.
    [29] Ludwig J,Meixner F X, Vogel B,et al. Soil-air exchange of nitric oxide:An overview of processes, environmental factors, and modeling studies[J]. Biogeochemistry, 2001,52(3):225-257.
    [30]郑欠,丁军军,李玉中,等.土壤含水量对硝化和反硝化过程N2O排放及同位素特征值的影响[J].中国农业科学,2017,50(24):4747-4758.Zheng Q, Ding J, Li Y, et al. The Effects of soil water content on n2o emissions and isotopic signature of nitrification and denitrification[J].Scientia Agricultura Sinica, 2017,50(24):4747-4758.
    [31] Liu J, Hou H, Sheng R, et al. Denitrifying communities differentially respond to flooding drying cycles in paddy soils[J]. Applied Soil Ecology, 2012,62(62):155-162.
    [32]侯会静,杨士红,徐俊增,等.水稻控制灌溉对稻田N2O排放的影响机理研究[J].中国科学:技术科学,2015,45(4):443-448.Hou H, Yang S, Xu J, et al. Influence mechanism of controlled irrigation on N2O emissions from paddy fields[J]. Sci Sin Tech, 2015,45(4):443-448.
    [33] Kralova M, Masscheleyn P H, Lindau C W, et al. Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential[J]. Water, Air, and Soil Pollution, 1992,61:37-45.
    [34]刘秋丽.不同灌水量下土壤水氮运移及氨挥发特性研究[J].人民黄河,2015,37(12):146-148.Liu Q. Soil water and nitrogen transport and ammonia volatilization characteristics research under different irrigation water[J]. Yellow River,2015,37(12):146-148.
    [35] Braker G, Conrad R. Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning?[J]Advances in Applied Microbiology, 2011,75:33-70.
    [36] Hunt P G, Matheny T A, Stone K C. Denitrification in a coastal plain riparian zone contiguous to a heavily loaded swine wastewater spray field[J]. Journal of Environmental Quality, 2004,33(6):2367-2374.
    [37] Bapiri A, Baath E, Rousk J. Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil[J]. Microbial Ecology,2010,60(2):419-428.
    [38]侯海军,秦红灵,陈春兰,等.土壤氮循环微生物过程的分子生态学研究进展[J].农业现代化研究,2014,35(5):588-594.Hou H, Qin H, Chen C, et al. Research progress of the molecular ecology on microbiological processes in soil nitrogen cycling[J].Research of Agricultural Modernization, 2014,35(5):588-594.
    [39] Chen X P, Zhu Y G, Xia Y, et al. Ammonia-oxidizing archaea:important players in paddy rhizosphere soil?[J]. Environmental Microbiology, 2010,10(8):1978-1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700