变渣皮厚度条件下铜冷却壁应力分布规律及挂渣稳定性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stress distribution law and adherent dross stability of the copper cooling stave with variable slag coating thickness
  • 作者:李峰光 ; 张建良
  • 英文作者:LI Feng-guang;ZHANG Jian-liang;School of Materials Science and Engineering,Hubei University of Automotive Technology;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;
  • 关键词:冷却壁 ; 挂渣 ; 热-力分析 ; 应力场
  • 英文关键词:cooling stave;;adherent dross;;thermal mechanical analysis;;stress field
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:湖北汽车工业学院材料科学与工程学院;北京科技大学冶金与生态工程学院;
  • 出版日期:2017-04-06 14:38
  • 出版单位:工程科学学报
  • 年:2017
  • 期:v.39;No.275
  • 基金:国家自然科学基金资助项目(51604103);; 湖北省自然科学基金资助项目(2016CFB293);; 湖北汽车工业学院博士科研启动基金资助项目(BK201607)
  • 语种:中文;
  • 页:BJKD201703011
  • 页数:10
  • CN:03
  • ISSN:10-1297/TF
  • 分类号:76-85
摘要
根据热弹性力学理论,建立了渣皮厚度可变的铜冷却壁热-力耦合应力场分布计算模型,从铜冷却壁本体和炉渣-镶砖界面应力分布的角度分析了煤气温度、冷却制度、镶砖材质和炉渣性质等因素对铜冷却壁寿命及挂渣稳定性的影响规律.计算结果表明:煤气温度的升高使铜冷却壁本体应力线性升高,同时挂渣稳定性减弱;铜冷却壁本体应力值及挂渣稳定性均随渣皮厚度增加而呈现先下降后上升的趋势,实际生产中渣皮厚度应维持在30~60 mm之间;冷却水流速的增大会导致铜冷却壁本体应力值小幅上升,但可使挂渣稳定性增强;冷却水温的提升可小幅降低冷却壁本体应力,但会显著降低挂渣稳定性;镶砖热导率的提升和炉渣热膨胀系数的减小均有利于降低铜冷却壁本体应力并增强挂渣稳定性.
        A thermal-mechanical coupling model of a copper cooling stave with variable slag coating was founded based on thermal elastic mechanics,and the influence of the gas temperature,the cooling system,the materials of insert bricks,and the properties of the slag on the stave life and the stability of the adherent dross was analyzed from the view point of the stress distribution of the stave body and the slag-brick interface. The results show that the increase of the gas temperature linearly improves the stress of stave body and reduces the stability of the adherent dross meanwhile. The stress of the stave body and the stability of the adherent dross both decrease at first and then increase when the slag coating thickness increases,and the slag coating thickness should be controlled between30 to 60 mm. The increase of water velocity incurs tiny growth of the stress of the stave body,while the stability of the adherent dross is enhanced. The stress of the stave body is weakly reduced with the increase of water temperature,but the stability of the adherent dross decreases heavily meanwhile. The increase of the heat conductivity of insert bricks and the decrease of the heat expansion coefficient of the slag significantly reduce the stress of the stave body and enhance the stability of the adherent dross.
引文
[1]Ganguly A,Reddy A S,Kumar A.Process visualization and diagnostic models using real time data of blast furnaces at Tata Steel.ISIJ Int,2010,50(7):1010
    [2]Yeh C P,Ho C K,Yang R J.Conjugate heat transfer analysis of copper staves and sensor bars in a blast furnace for various refractory lining thickness.Int Commun Heat Mass Transfer,2012,39(1):58
    [3]Zhu R L,Ju Q Z.Operation conditions of copper cooling stave for blast furnace and suggestion.Ironmaking,2012,31(4):10(朱仁良,居勤章.铜冷却壁高炉操作现象及思考.炼铁,2012,31(4):10)
    [4]Wang B H,Zhang H Y,Che Y M.Heat load management of copper cooling stave for BF in Anshan Iron and Steel Co.Ltd.Ironmaking,2008,27(2):1(王宝海,张洪宇,车玉满.鞍钢铜冷却壁高炉的热负荷管理.炼铁,2008,27(2):1)
    [5]Zhang H S,Ma H B,Chen J,et al.The practice of copper cooling stave application for Shougang No.2 BF//Proceedings of the5th International Congress on the Science and Technology of Ironmaking.Shanghai,2009:887
    [6]Zuo H B,Hong J,Zhang J L,et al.Numerical simulation of temperature field of BF cooling staves of different materials under different conditions.J Wuhan Univ Sci Technol,2014,37(2):102(左海滨,洪军,张建良,等.不同工况下各种材质高炉冷却壁温度场数值模拟.武汉科技大学学报,2014,37(2):102)
    [7]Zuo H B,Zhang J L,Li F G.Damage reason analysis of copper cooing stave//Materials Science and Technology Conference and Exhibition 2013.Montreal,2013:574
    [8]Li F G,Zhang J L.Calculation model of the adherent dross capacity of copper staves based on ANSYS birth-death element technology.Chin J Eng,2016,38(4):546(李峰光,张建良.基于ANSYS“生死单元”技术的铜冷却壁挂渣能力计算模型.工程科学学报,2016,38(4):546)
    [9]Ji X L,Liu Z X,LüQ,et al.Analysis on slag skull on BF copper cooling stave for vanadium-bearing titaniferous magnetite smelting.Iron Steel Vanadium Titanium,2012,33(1):55(计秀兰,刘增勋,吕庆,等.冶炼钒钛磁铁矿高炉的铜冷却壁挂渣分析.钢铁钒钛,2012,33(1):55)
    [10]Shi L,Guo Y M,Cao F J.Research on creep deformation of cast copper staves.J Inner Mongolia Univ Sci Technol,2013,32(1):42(石琳,郭永茂,曹福军.铸铜冷却壁蠕变变形研究.内蒙古科技大学学报,2013,32(1):42)
    [11]Wei Y,Kong J Y,Jiang B X,et al.Numerical simulation and structural optimization of BF bosh cast copper cooling wall.Foundry Technol,2013,34(7):918(魏渊,孔建益,姜本熹,等.高炉炉腹区域铸铜冷却壁的数值模拟及结构优化.铸造技术,2013,34(7):918)
    [12]Deng K,Cheng H E,Wu L J,et al.Influence of structural parameters on temperature field and thermal stress of BF cooling stave.J Iron Steel Res,2006,18(2):1(邓凯,程惠尔,吴俐俊,等.结构参数对高炉冷却壁温度场及热应力分布的影响.钢铁研究学报,2006,18(2):1)
    [13]Chen M X.Elasticity and Plasticity.Beijing:Science Press,2007(陈明祥.弹塑性力学.北京:科学出版社,2007)
    [14]Shi L,Cheng S S,Zhang L J.Thermal distortion of blast furnace copper staves.Chin J Nonferrous Met,2005,15(12):2040(石琳,程素森,张利君.高炉铜冷却壁的热变形.中国有色金属学报,2005,15(12):2040)
    [15]Liu Z X.Coupled Thermo-mechanical Analysis about Blast Furnace Staves[Dissertation].Shenyang:Northeastern University,2009(刘增勋.高炉冷却壁热力耦合分析[学位论文].沈阳:东北大学,2009)
    [16]Ma H B,Zhang H S.Conclusion from copper cooling stave application for Shougang No.2 BF.Ironmaking,2008,27(5):9(马洪斌,张贺顺.首钢2号高炉铜冷却壁使用的体会.炼铁,2008,27(5):9)
    [17]Fan C Q,Wang F,Li Y S.The study of control measures on slag crust fall off for No.3 blast furnace in Ansteel//2014 Annual National Ironmaking Technology and Academic Conference.Zhengzhou,2014:157(范崇强,王飞,李永胜.鞍钢3号高炉控制渣皮脱落措施的研究//2014年全国炼铁生产技术会暨炼铁学术年会.郑州,2014:157)
    [18]Liao Y T,Bi L G,Yang J,et al.Production practice of applying thin-skinned lining for No.8 blast furnace in Liugang.Sci Technol Liuzhou Steel,2009,37(1):12(廖玉通,闭立钢,杨剑,等.柳钢8号高炉应用薄壁炉衬生产实践.柳钢科技,2009,37(1):12)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700