可搬运30cm光学腔
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transportable 30 cm optical cavity
  • 作者:陶斌凯 ; 陈群峰
  • 英文作者:TAO Binkai;CHEN Qunfeng;State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:激光技术 ; 频率稳定 ; 光学腔 ; 可搬运
  • 英文关键词:laser technology;;frequency stabilization;;optical cavity;;transportability
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室;中国科学院大学;
  • 出版日期:2019-05-15
  • 出版单位:量子电子学报
  • 年:2019
  • 期:v.36;No.188
  • 基金:国家自然科学基金重大研究计划,91636110;; 中国科学院战略性先导科技专项(B类),XDB21010300;; 国家重点研发计划,2017YFA0304403~~
  • 语种:中文;
  • 页:LDXU201903007
  • 页数:6
  • CN:03
  • ISSN:34-1163/TN
  • 分类号:45-50
摘要
超稳激光是将激光频率稳定在超稳定光学腔的谐振频率上产生的,为了研制可搬运光钟所需的超稳钟激光,需要研制可搬运超稳定光学腔。通过光学腔的有限元分析,设计了一个振动敏感度低且结构稳健性好的可搬运光学腔,其腔长为30 cm,是目前已知腔长最长的可搬运光学腔。光学腔沿三个正交方向的振动敏感度的测量结果分别为:沿光学腔腔轴方向(水平)为1.4×10~(-10) g~(-1);垂直光学腔腔轴方向(水平)为1.5×10~(-10)g~(-1);垂直光学腔腔轴方向(竖直)为1.2×10~(-10) g~(-1)。腔的振动敏感度略优于普通水平放置的光学腔,且腔具有更高的结构稳健性,可水平或者竖直安装。该光学腔设计可用于研制可搬运光钟。
        Ultra-stable lasers are generated by stabilizing their frequencies to the resonances of ultra-stable optical cavities. In order to develop ultra-stable clocks laser for transportable optical clocks, transportable ultra-stable optical cavities need to be developed. Based on the finite element analysis, the vibrationinsensitive and structure-robust transportable optical cavity is designed, whose length is 30 cm and it is currently the longest among transportable optical cavities to our best knowledge. The vibration sensitivities of the cavity in three orthogonal directions are measured to be 1.4 x 10~(-10) g~(-1) along the cavity axis(horizontal), 1.5 x 10~(-10) g~(-1) cross the cavity(horizontal), and 1.2 x 10~(-10) g~(-1) cross the cavity(vertical).Compared with normal horizontal-placed optical cavities, the cavity has slightly better vibration sensitivity, and is more robust to be mounted horizontally or vertically. The cavity can be used to develop a transportable optical clock.
引文
[1] Salomon C, Hils D, Hall J L. Laser stabilization at the millihertz level[J]. Journal of the Optical Society of America B, 1998, 5(8):1576-1587.
    [2] Jiang Yanyi, Bi Zhiyi, Xu Xinye, et al. Two-hertz-linewidth Nd:YAG lasers at 1064 nm stabilized to vertically mounted ultra-stable cavities[J].Chinese Physics B(中国物理B),2008, 17(6):2152-2155(in Chinese).
    [3] Tai Zhao-Yang, Yan Lu-Lu, Zhang Yan-Yan, et al. Transportable 1555-nm ultra-stable laser with sub-0.185-Hz Linewidth[J]. Chinese Phsics Letters(中国物理快报),2017,34(9):90602(in Chinese).
    [4] Haefner S, Falke S, Grebing C, et al. 8×10~(-17)fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 2015, 40(9):2112-2115.
    [5] Matei D G, Legero T,Hafner S, et al. 1.5μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters,2017, 118(26):263202.
    [6] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10~(-18)level[J]. Nature, 2014, 506(7486):71-75.
    [7] Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2):637-701.
    [8] Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 3 x 10-18 systematic uncertainty[J].Physical Review Letters, 2016, 116(6):063001.
    [9] Huang Y, Guan H, Liu P, et al. Frequency comparison of two~(40)Ca~+optical clocks with an uncertainty at the10-17 level[J]. Physical Review Letters, 2016, 116(1):013001.
    [10] Hutson R, Campbell S, Marti E, et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science,2017, 358(6359):90-94.
    [11] Eisele C, Nevsky A Y, Schiller S. Laboratory test of the isotropy of light propagation at the 10-17 level[J].Physical Review Letters, 2009, 103(9):090401.
    [12] Chen Q, Magoulakis E, Schiller S. High-sensitivity crossed-resonator laser apparatus for improved tests of Lorentz invariance and of space-time fluctuations[J]. Physical Review D, 2016, 93(2):022003.
    [13] Hees A, Guena J, Abgrall M, et al. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons[J]. Physical Review Letters, 2016, 117(6):061301.
    [14] Roberts B M, Blewitt G, Dailey C,et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites[J]. Nature Communications, 2017, 8(1):1195.
    [15] Adhikari R X. Gravitational radiation detection with laser interferometry[J]. Reviews of Modern Physics, 2014,86(1):121-151.
    [16] Abbott B P, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6):061102.
    [17] Koller S B, Grotti J, Vogt S, et al. Transportable optical lattice clock with 7 x 10-17 uncertainty[J]. Physical Review Letters, 2017, 118(7):073601.
    [18] Cao J, Zhang P,Shang J, et al. A compact, transportable single-ion optical clock with 7.8×10~(-17)systematic uncertainty[J]. Applied Physics B, 2017, 123(4):112.
    [19] Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 2006, 30(5):053801.
    [20] Millo J, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5):053829.
    [21] Webster S, Gill P. Force-insensitive optical cavity[J]. Optics Letters, 2011, 36(18):1539-4794.
    [22] Leibrandt D R, Thorpe M J, Notcutt M, et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Optics Express, 2011, 19(4):1094-4087.
    [23] Chen Q F, Nevsky A, Cardace M, et al. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 x 10~(-15)[J]. Review of Scientific Instruments, 2014, 85(11):113107.
    [24] Kessler T, Legero T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors[J]. Journal of the Optical Society of America B, 2010, 27(5):914-919.
    [25] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J].Physical Review Letters, 2004, 93(25):250602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700