Mn-基超级电容电极材料的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress in Mn-based Materials as Supercapacitor Electrodes
  • 作者:张万英 ; 胡良胜 ; 鲁福身
  • 英文作者:ZHANG Wanying;HU Liangsheng;LU Fushen;Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University;
  • 关键词:超级电容器 ; Mn-基材料 ; 比电容 ; 电化学性质
  • 英文关键词:upercapacitors;;Mn-based materials;;specific capacitance;;electrochemical properties
  • 中文刊名:STDX
  • 英文刊名:Journal of Shantou University(Natural Science Edition)
  • 机构:汕头大学化学系广东省有序结构材料的制备与应用重点实验室;
  • 出版日期:2019-08-09
  • 出版单位:汕头大学学报(自然科学版)
  • 年:2019
  • 期:v.34;No.102
  • 基金:国家自然科学基金资助项目(21806099,21671127);; 广东高校省级重大科研项目(2017KZDXM034);; 汕头大学科研启动经费项目(NTF18009)
  • 语种:中文;
  • 页:STDX201903001
  • 页数:18
  • CN:03
  • ISSN:44-1059/N
  • 分类号:2+5-21
摘要
随着世界经济的快速发展,伴随着化石能源的消耗和严重的环境污染问题出现,积极开发和利用可替代再生清洁能源和能源储存元件显得极为重要.超级电容器,具有功率密度高、充电时间短、使用寿命长、温度特性好、绿色环保等特点被视为最具有潜在实际应用前景的储能装置之一,近年来受到广泛关注.在超级电容器电极材料研究中,由于Mn的氧化态最多,其中大多数Mn-基材料具有特殊的隧道结构,有利于进行氧化还原反应,因此具有非常高的理论电容量,使得Mn-基材料成为极具潜力的储能电极材料.近十年来,人们对Mn-基电极材料进行了深入的研究,并取得突破性的进展.电极的比电容与活性物质的负载质量以及形貌之间存在着及其密切的关系,对Mn-基电极材料的研究集中在物种的结构设计和控制Mn-基物种的形貌来暴露更多的活性位点,在不限制负载质量的情况下,缩小实际电容和理论电容之间的差距.虽然Mn-基材料有诸多优点且最近几年的研究也取得极大的突破,但Mn-基材料本身电导性较差,现有设计的结构还不够优化,结构所暴露的氧化还原活性位点数量不够丰富,其呈现的电化学性能仍远未达到理论容量,亦未能满足实际应用的需要.最近已有关于碳材料复合、形貌及结构改性和合成方法优化等方面对MnO_2-基电容器进行综述的报道,但没有不同Mn-基材料电容器相关的综述报道,本文分别从Mn-基材料的储能机理、晶体结构、改性方法以及不同活性物种MnO_2、MnO、Mn_3O_4、Mn(OH)_2和其他Mn-基材料的优缺点等方面进行综述,并提出进一步改进材料电化学性能的方向.
        Over the past century, energy requirements increased rapidly due to the global development leading to the rapid depletion of conventional fossil fuels as well as the accompanying detrimental environmental issues. Therefore, it is highly urgent to develop renewable, clean alternatives, and usable energy storage devices that can resolve the current problems. Supercapacitors, with high power density,long cycle life, and both economic and environmental advantages, have been widely considered as one promising candidate of green energy storage devices. As one of typical materials showing intrinsic pseudocapacitive behaviors, Mn-based materials are attractive because of owning large potential windows and high theoretical capacitance values, resulting from many accessible oxidation states of Mn and a special tunnel structure. Recent intense studies have made breakthrough in boosting capacitance via conductive component coupling, heterojunction configuring, morphologies controlling, and metal doping to accommodate more redox-active sites. Nevertheless, there is still a wide gap between the practical and theoretical capacitance value due to the naturally poor electrical conductivity of Mn-based materials and imperfectly current structural designs, which greatly hampers in commercial applications.Herein, we systematically review Mn-based materials for supercapacitor electrodes from mechanism,crystalline structures, modification, and comparation of various Mn-based materials, as well as propose possible guides for further improvement.
引文
[1] GUO Y,ZHANG W,SUN Y,et al. Ruthenium nanoparticles stabilized by mercaptan and acetylene derivatives with supercapacitor application[J]. Electrochimica Acta,2018,270:284-293.
    [2] BROUSSE T,TOUPIN M,DUGAS R,et al. Crystalline MnO2as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society,2006,153(12):A2171-A2180.
    [3]彭满芝.锰的氧化物/氢氧化物薄膜电极的制备及电容特性[D].湘潭:湖南科技大学,2012.
    [4] LIU Z,XU K,SUN H,et al. One-step synthesis of single-layer MnO2nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors[J]. Small,2015,11(18):2182-2191.
    [5] CHEN L,ZHANG M,YANG X,et al. Sandwich-structured MnO2@N-doped carbon@MnO2nanotubes for high-performance supercapacitors[J]. Journal of Alloys and Compounds,2017,695:3339-3347.
    [6] LI X J,ZHAO Y,CHU W G,et al. Vertically aligned carbon nanotube@MnO2nanosheet arrays grown on carbon cloth for high performance flexible electrodes of supercapacitors[J]. RSC Advances,2015,5(94):77437-77442.
    [7] CHEN S,ZHU J,WU X,et al. Graphene oxide-MnO2nanocomposites for supercapacitors[J]. ACS Nano,2010,4(5):2822-2830.
    [8] LIU W,WANG Z,SU Y,et al. Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances[J].Advanced Energy Materials,2017,7(22):1602834.
    [9] WANG Z,WANG F,LI Y,et al. Interlinked multiphase Fe-doped MnO2nanostructures:a novel design for enhanced pseudocapacitive performance[J]. Nanoscale,2016,8(13):7309-7317.
    [10] XIA H,HONG C,SHI X,et al. Hierarchical heterostructures of Ag nanoparticles decorated MnO2nanowires as promising electrodes for supercapacitors[J]. Journal of Materials Chemistry A,2015,3(3):1216-1221.
    [11] ZHAI T,XIE S,YU M,et al. Oxygen vacancies enhancing capacitive properties of MnO2nanorods for wearable asymmetric supercapacitors[J]. Nano Energy,2014,8:255-263.
    [12] GAO P,METZ P,HEY T,et al. The critical role of point defects in improving the specific capacitance ofδ-MnO2nanosheets[J]. Nature communications,2017,8:14559.
    [13] JIA H,CAI Y,LIN J,et al. Heterostructural graphene quantum dot/MnO2nanosheets toward highpotential window electrodes for high-performance supercapacitors[J]. Advanced Science,2018,5(5):1700887.
    [14] LU X,YU M,WANG G,et al. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors[J]. Advanced Materials,2013,25(2):267-272.
    [15] LEE H Y,GOODENOUGH J B. Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry,1999,144(1):220-223.
    [16]黄文欣,李军,徐云鹤.二氧化锰基超级电容器的研究进展[J].材料导报,2018,32(15):2555-2564.
    [17] GUO W,YU C,LI S,et al. Strategies and insights towards the intrinsic capacitive properties of MnO2for supercapacitors:Challenges and perspectives[J]. Nano Energy,2019,57:459-472.
    [18] YUAN C,SU L,GAO B,et al. Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes[J]. Electrochimica Acta,2008,53(24):7039-7047.
    [19] LONG J W,RHODES C P,YOUNG A L,et al. Ultrathin,protective coatings of poly(o-phenylenediamine)as electrochemical proton gates:making mesoporous MnO2nanoarchitectures stable in acid electrolytes[J].Nano Letters,2003,3(8):1155-1161.
    [20] JIANG J,KUCERNAK A. Electrochemical supercapacitor material based on manganese oxide:preparation and characterization[J]. Electrochimica Acta,2002,47(15):2381-2386.
    [21] MESSAOUDI B,JOIRET S,KEDDAM M,et al. Anodic behaviour of manganese in alkaline medium[J]. Electrochimica Acta,2001,46(16):2487-2498.
    [22] XU G,XIE C,WEN Y,et al. Mn(OH)2electrodeposited on secondary porous Ni nano-architecture foam as high-performance electrode for supercapacitors[J]. Ionics,2019,25(7):3287-3298.
    [23] ZHANG Q Z,ZHANG D,MIAO Z C,et al. Research progress in MnO2-carbon based supercapacitor electrode materials[J]. Small,2018,14(24):1702883.
    [24] DEVARAJ S,MUNICHANDRAIAH N. Effect of crystallographic structure of MnO2on its electrochemical capacitance properties[J]. The Journal of Physical Chemistry C,2008,112(11):4406-4417.
    [25]董锦洋.二氧化锰超级电容器电极材料制备及电化学性能研究[D].北京:北京交通大学,2017.
    [26] YAN D,LI Y,LIU Y,et al. Synthesis and electrochemical properties of multilayered porous hexagonal Mn(OH)2nanoplates as supercapacitor electrode material[J]. Materials Letters,2014,136:7-10.
    [27] HU Y,WU Y,WANG J. Manganese-oxide-based electrode materials for energy storage applications:how close are we to the theoretical capacitance?[J]. Advanced Materials,2018,30(47):1802569.
    [28] WEI W,CUI X,CHEN W,et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews,2011,40(3):1697-1721.
    [29] KIANI M A,KHANI H,MOHAMMADI N. MnO2/ordered mesoporous carbon nanocomposite for electrochemical supercapacitor[J]. Journal of Solid State Electrochemistry,2014,18(4):1117-1125.
    [30] XU C,LI Z,YANG C,et al. An ultralong,highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors[J]. Advanced Materials,2016,28(21):4105-4110.
    [31] WANG Z, WANG F. An innovative carbon template-induced approach to a grapheme-like MnO2nanomesh with enhanced pseudocapacitance performance[J]. Journal of Materials Chemistry A,2017,5(20):9709-9716.
    [32] BAG S,RAJ C R. Facile shape-controlled growth of hierarchical mesoporousδ-MnO2for the development of asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2016,4(21):8384-8394.
    [33] ZHANG H, ZHANG Z, QI X, et al. A manganese monoxide/biomass-inherited porous carbon nanostructure composite based on the high water-absorbent agaric for asymmetric supercapacitor[J].ACS Sustainable Chemistry&Engineering,2019,7(4):4284-4294.
    [34] LI M,LEI W,YU Y,et al. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities[J]. Nanoscale,2018,10(34):15926-15931.
    [35] YU N,GUO K,ZHANG W,et al. Flexible high-energy asymmetric supercapacitors based on MnO@C composite nanosheet electrodes[J]. Journal of Materials Chemistry A,2017,5(2):804-813.
    [36] WANG T,PENG Z,WANG Y,et al. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor[J].Scientific Reports,2013,3:2693.
    [37] LIU B,LIU Y,CHEN H,et al. MnO2nanostructures deposited on graphene-like porous carbon nanosheets for high-rate performance and high-energy density asymmetric supercapacitors[J]. ACS Sustainable Chemistry&Engineering,2019,7(3):3101-3110.
    [38] RAMADAN M,ABDELLAH A M,MOHAMED S G,et al. 3D interconnected binder-free electrospun MnO@C nanofibers for supercapacitor devices[J]. Scientific Reports,2018,8(1):7988.
    [39] XU J,FAN X,XIA Q,et al. A highly atom-efficient strategy to synthesize reduced graphene oxideMn3O4nanoparticles composites for supercapacitors[J]. Journal of Alloys and Compounds,2016,685:949-956.
    [40] AGHAZADEH M,BAHRAMI-SAMANI A,GHARAILOU D,et al. Mn3O4nanorods with secondary plate-like nanostructures; preparation, characterization and application as high performance electrode material in supercapacitors[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(11):11192-11200.
    [41] LIAO Q Y,LI S Y,CUI H,et al. Vertically-aligned graphene@Mn3O4nanosheets for a high-performance flexible all-solid-state symmetric supercapacitor[J]. Journal of Materials Chemistry A,2016,4(22):8830-8836.
    [42] DUBAL D P,HOLZE R. Self-assembly of stacked layers of Mn3O4nanosheets using a scalable chemical strategy for enhanced, flexible, electrochemical energy storage[J]. Journal of Power Sources,2013,238:274-282.
    [43] FAN Y,ZHANG X,LIU Y,et al. One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors[J]. Materials Letters,2013,95:153-156.
    [44] LI L,SENG K H,LIU H,et al. Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior[J]. Electrochimica Acta,2013,87:801-808.
    [45] WANG B,PARK J,WANG C,et al. Mn3O4nanoparticles embedded into graphene nanosheets:preparation,characterization,and electrochemical properties for supercapacitors[J]. Electrochimica Acta,2010,55(22):6812-6817.
    [46] ZHU L,ZHANG S,CUI Y,et al. One step synthesis and capacitive performance of graphene nanosheets/Mn3O4composite[J]. Electrochimica Acta,2013,89:18-23.
    [47] YANG Z,GONG J,TANG C,et al. Vertically-aligned Mn(OH)2nanosheet films for flexible all-solid-state electrochemical supercapacitors[J]. Journal of Materials Science:Materials in Electronics,2017,28(23):17533-17540.
    [48] NAYAK P K,MUNICHANDRAIAH N. Simultaneous electrodeposition of MnO2and Mn(OH)2for supercapacitor studies[J]. Electrochemical and Solid-State Letters,2009,12(6):A115-A119.
    [49] FAN Z,CHEN J,SUN F,et al. Preparation of porous manganese hydroxide film and its application in supercapacitors[J]. Indian Journal of Chemistry-Section A,2007,46A(5):736-741.
    [50] LIU J S,HU Y,CHUANG T L,et al. Mn(OH)2/multi-walled carbon nanotube composite thin films prepared by spray coating for flexible supercapacitive devices[J]. Thin Solid Films, 2013, 544:186-190.
    [51] GUAN H,CAI P,ZHANG X,et al. Cu2O templating strategy for the synthesis of octahedral Cu2O@Mn(OH)2core-shell hierarchical structures with a superior performance supercapacitor[J]. Journal of Materials Chemistry A,2018,6(28):13668-13675.
    [52] ANANDAN S,RAJ B G S,LEE G J,et al. Sonochemical synthesis of manganese(II)hydroxide for supercapacitor applications[J]. Materials Research Bulletin,2013,48(9):3357-3361.
    [53] XU J,SUN Y,LU M,et al. Fabrication of porous Mn2O3microsheet arrays on nickel foam as highrate electrodes for supercapacitors[J]. Journal of Alloys and Compounds,2017,717:108-115.
    [54] LI W,SHAO J,LIU Q,et al. Facile synthesis of porous Mn2O3nanocubics for high-rate supercapacitors[J]. Electrochimica Acta,2015,157:108-114.
    [55] LEE C C,OMAR F S,NUMAN A,et al. An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite[J]. Journal of Solid State Electrochemistry,2017,21(11):3205-3213.
    [56] TANG Y,CHEN T,YU S. Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances[J]. Chemical Communications,2015,51(43):9018-9021.
    [57] JANA M,KUMAR J S,KHANRA P,et al. Superior performance of asymmetric supercapacitor based on reduced graphene oxide-manganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials[J]. Journal of Power Sources,2016,303:222-233.
    [58]余晨辉,何博文,王正华.尖晶石型锌-钴-锰多元金属氧化物纳米线的制备及用作超级电容器电极材料[J].新余学院学报,2017,22(3):35-40.
    [59] HUANG Z H,SONG Y,FENG D Y,et al. High mass loading MnO2with hierarchical nanostructures for supercapacitors[J]. ACS Nano,2018,12(4):3557-3567.
    [60] ZHU C,YANG L,SEO J K,et al. Self-branchedα-MnO2/δ-MnO2heterojunction nanowires with enhanced pseudocapacitance[J]. Materials Horizons,2017,4(3):415-422.
    [61] LIAO Q,LI N,CUI H,et al. Vertically-aligned graphene@MnO nanosheets as binder-free highperformance electrochemical pseudocapacitor electrodes[J]. Journal of Materials Chemistry A,2013,1(44):13715-13720.
    [62] YANG M,ZHONG Y,ZHOU X,et al. Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2014,2(31):12519-12525.
    [63] FU Y,GAO X,ZHA D,et al. Yolk-shell-structured MnO2microspheres with oxygen vacancies for highperformance supercapacitors[J]. Journal of Materials Chemistry A,2018,6(4):1601-1611.
    [64] HU Z,XIAO X,CHEN C,et al. Al-dopedα-MnO2for high mass-loading pseudocapacitor with excellent cycling stability[J]. Nano Energy,2015,11:226-234.
    [65] KANG J,HIRATA A,KANG L,et al. Enhanced supercapacitor performance of MnO2by atomic doping[J]. Angewandte Chemie International Edition,2013,52(6):1664-1667.
    [66]张子瑜,胡中爱,杨玉英,等. Ce掺杂Mn3O4及其电化学电容行为[J].物理化学学报,2011,27(7):1673-1678.
    [67] ZHAO Y,RAN W,XIONG D B,et al. Synthesis of Sn-doped Mn3O4/Cnanocomposites as supercapacitor electrodes with remarkable capacity retention[J]. Materials Letters,2014,118:80-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700