生菜地上部镉累积规律及其与矿质元素浓度的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cadmium accumulation in above-ground parts of lettuce(Lactuca sativa L.) and its relationship between mineral nutrients concentration
  • 作者:唐希望 ; 吉普辉 ; 同延安 ; 伊丽丽
  • 英文作者:TANG Xi-wang;JI Pu-hui;TONG Yan-an;YI Li-li;Department of Environmental Science, Heibei University of Environmental Engineering;College of Resources and Environment, Northwest A&F University;
  • 关键词:日光温室 ; 镉污染 ; 生菜 ; 镉吸收规律 ; 矿质元素
  • 英文关键词:greenhouse;;Cd pollution;;lettuce;;Cd uptake characteristic;;mineral nutrients
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:河北环境工程学院环境科学系;西北农林科技大学资源环境学院;
  • 出版日期:2018-05-20
  • 出版单位:农业环境科学学报
  • 年:2018
  • 期:v.37;No.273
  • 基金:公益性行业(农业)科研专项(201203045);; 河北环境工程学院博士启动基金项目(B201406)~~
  • 语种:中文;
  • 页:NHBH201805003
  • 页数:8
  • CN:05
  • ISSN:12-1347/S
  • 分类号:26-33
摘要
为探究镉污染条件下日光温室生菜在整个生育期内对镉的吸收规律及其与矿质元素吸收的关系,采取田间试验的方法,以立生二号生菜作为供试材料,种植在镉污染(Cd浓度1.87 mg·kg~(-1))日光温室内。在整个生育期不间断采样,测定生菜地上部Cd及Fe、Mn、Cu、Zn、Ca、Mg含量。结果表明,生菜地上部Cd浓度在苗期从2.70 mg·kg~(-1)增加到3.62 mg·kg~(-1),器官形成期从3.62 mg·kg~(-1)降低到2.40 mg·kg~(-1),抽薹期从2.40 mg·kg~(-1)降低到1.64 mg·kg~(-1)。单株生菜地上部Cd累积的速率可以用"S"型曲线方程进行描述(R~2=0.99)。苗期、器官形成期和抽薹期Cd累积速率分别为0.098、0.516、0.056μg·株~(-1)·d~(-1)。Cd与Fe、Mn、Cu、Zn、Ca、Mg浓度相关系数在整个生长阶段生菜分别为-0.77、-0.31、-0.06、0.09、0.46、-0.10,在营养生长阶段分别为-0.43、0.25、-0.06、0.16、0.56、0.41,在生殖生长阶段分别为-0.82、-0.26、0.72、0.93、0.42、0。可以得出如下结论:生菜地上部Cd浓度的变化与地上部生物量的变化高度相关,Cd浓度在苗期增加,在器官形成期和抽薹期降低。约15%的Cd累积发生在苗期,约80%的Cd累积发生在器官形成期,约5%的Cd累积发生在抽薹期。整个生长阶段生菜地上部Cd浓度和Fe浓度变化呈极显著负相关,和Ca呈显著正相关;在营养生长阶段,生菜地上部Cd浓度和Ca浓度变化呈显著正相关;在生殖生长阶段生菜地上部Cd浓度变化和Fe显著负相关,和Zn、Ca显著正相关。
        To explore the characteristic of Cd concentrations and accumulation in above-ground parts of lettuce and its interactions with mineral nutrients uptake, a field study was conducted in a Cd-contaminated greenhouse. Lettuce named"Lisheng, erhao"was cultivated and the above-ground parts were sampled during the whole growth stage and the Cd and Fe, Mn, Cu, Zn, Ca, Mg content in lettuce aboveground parts were measured. The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62 mg·kg~(-1) during the seedling stage, but decreased from 3.62 to 2.40 mg·kg~(-1) during organogenesis and from 2.40 to 1.64 mg·kg~(-1) during bolting. The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve(R~2=0.99). The Cd accumulate rate for seedling stage, organogenesis and bolting were 0.098, 0.516, 0.056 μg·plant~(-1)·d~(-1). During the whole stage, the r value of Cd with Fe, Mn, Cu, Zn, Ca, Mg were -0.77,-0.31,-0.06, 0.09, 0.46,-0.10 respectively. During the vegetative stage(seedling+ organogenesis stage)the r value of Cd with Fe, Mn, Cu, Zn, Ca, Mg were-0.43, 0.25,-0.06, 0.16, 0.56, 0.41 respectively. During reproductive stage, the r value of Cd with Fe, Mn, Cu, Zn, Ca, Mg were-0.82,-0.26, 0.72, 0.93, 0.42, 0. The conclusion were:The Cd content in lettuce aboveground parts was highly related to growth, the Cd content was increasing during seedling while decreasing during organogenesis and bolting.Cadmium uptake during seedling was 15%, during organogenesis was 80%, during bolting was 4.35%. During the whole stage, the concen-tration of Cd content in lettuce was negative related to the concentration of Fe(r=-0.77, P<0.01), significantly positive with the concentration of Ca(r=0.46, P<0.05). During vegetative stage, Cd concentration in lettuce was significant positive related to Ca(r =0.56, P >0.05).During reproductive stage, Cd concentration showed significant negative to Fe concentration(r=-0.82, P<0.05)while it was significant positive with Zn concentration(r=0.93, P<0.01).
引文
[1]Hagino N,Kono M.A study on the cause of Itai-itai-disease[C].Proc17th Mtg Japanese Soc of Clinical Surgeons,1955.
    [2]Jarup L,akesson A.Current status of cadmium as an environmental health problem[J].Toxicology and Applied Pharmacology,2009,238(3):201-208.
    [3]Baldantoni D,Morra L,Zaccardelli M,et al.Cadmium accumulation in leaves of leafy vegetables[J].Ecotoxicology and Environmental Safety,2016,123:89-94.
    [4]FAO,WHO.List of maximum levels recommended for contaminants by the joint FAO/WHO[R].Rome:FAO,WHO,1978.
    [5]Bolan N,Kunhikrishnan A,Thangarajan R,et al.Remediation of heavy metal(loid)s contaminated soils:To mobilize or to immobilize?[J].J Hazard Mater,2014,266:141-166.
    [6]Noll M R.Trace elements in terrestrial environments:Biogeochemistry,bioavailability,and risks of metals,2nd Edition[J].Journal of Environmental Quality,2003,32(1):374.
    [7]Das P,Samantaray S,Rout G R.Studies on cadmium toxicity in plants:A review[J].Environmental Pollution,1997,98(1):29-36.
    [8]Tyler G,P Hlsson A M B,Bengtsson G,et al.Heavy-metal ecology of terrestrial plants,microorganisms and invertebrates[J].Water,Air,and Soil Pollution,1989,47(3/4):189-215.
    [9]Liu Y,Vijver M G,Peijnenburg W J G M.Impacts of major cations(K+,Na+,Ca2+,Mg2+)and protons on toxicity predictions of nickel and cadmium to lettuce(Lactuca sativa L.)using exposure models[J].Ecotoxicology,2014,23(3):385-395.
    [10]Do Nascimento Da Silva E,Heerdt G,Cidade M,et al.Use of in vitro digestion method and theoretical calculations to evaluate the bioaccessibility of Al,Cd,Fe and Zn in lettuce and cole by inductively coupled plasma mass spectrometry[J].Microchemical Journal,2015,119:152-158.
    [11]Zorrig W,El Khouni A,Ghnaya T,et al.Lettuce(Lactuca sativa):A species with a high capacity for cadmium(Cd)accumulation and growth stimulation in the presence of low Cd concentrations[J].Journal of Horticultural Science&Biotechnology,2013,88(6):783-789.
    [12]Pereira B,Rozane D E,Araujo S R,et al.Cadmium availability and accumulation by lettuce and rice[J].Revista Brasileira de Ciência do Solo,2011,35(2):645-654.
    [13]Rashid A,Mahmood T,Mehmood F,et al.Phytoaccumulation,competitive adsorption and evaluation of chelators-metal interaction in lettuce plant[J].Environmental Engineering and Management Journal,2014,13(10):2583-2592.
    [14]Fontes R,Pereira J,Neves J.Uptake and translocation of Cd and Zn in two lettuce cultivars[J].Anais da Academia Brasileira de Ciências,2014,86(2):907-922.
    [15]Kukier U,Chaney R L,Ryan J A,et al.Phytoavailability of cadmium in long-term biosolids-amended soils[J].J Environ Qual,2010,39(2):519-530.
    [16]Melo L,Alleoni L,Swartjes F A,et al.Cadmium uptake by lettuce(Lactuca sativa L.)as basis for derivation of risk limits in soils[J].Human and Ecological Risk Assessment,2012,18(4):888-901.
    [17]Molina M,Escudey M,Chang A C,et al.Trace element uptake dynamics for maize(Zea mays L.)grown under field conditions[J].Plant and Soil,2013,370(1/2):471-483.
    [18]Podar D,Ramsey M H.Effect of alkaline p H and associated Zn on the concentration and total uptake of Cd by lettuce:Comparison with predictions from the CLEA model[J].Science of the Total Environment,2005,347(1/2/3):53-63.
    [19]Liu J G,Liang J S,Li K Q,et al.Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress[J].Chemosphere,2003,52(9):1467-1473.
    [20]Liu J G,Li K Q,Xu J K,et al.Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes[J].Field Crops Research,2003,83(3):271-281.
    [21]Nan Z R,Li J J,Zhang J M,et al.Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions[J].Sci Total Environ,2002,285(1/2/3):187-195.
    [22]Sarwar N,Malhi S S,Zia M H,et al.Role of mineral nutrition in minimizing cadmium accumulation by plants[J].Journal of the Science of Food and Agriculture,2010,90(6):925-937.
    [23]Sarwar N,Ishaq W,Farid G,et al.Zinc-cadmium interactions:Impact on wheat physiology and mineral acquisition[J].Ecotoxicology and Environmental Safety,2015,122:528-536.
    [24]王丽香,陈虎,郭峰,等.镉胁迫对花生生长和矿质元素吸收的影响[J].农业环境科学学报,2013,32(6):1106-1110.WANG Li-xiang,CHEN Hu,GUO Feng,et al.Effects of cadmium on peanut growth and mineral nutrient uptake[J].Journal of Agro-Environment Science,2013,32(6):1106-1110.
    [25]Ji P,Jiang Y,Tang X,et al.Enhancing of phytoremediation efficiency using indole-3-acetic acid(IAA)[J].Soil and Sediment Contamination:An International Journal,2015,24(8):909-916.
    [26]Tang X W,Pang Y,Ji P H,et al.Cadmium uptake in above-ground parts of lettuce(Lactuca sativa L.)[J].Ecotoxicology and Environmental Safety,2016,125:102-106.
    [27]Fismes J F,Echevarria G,Leclerc-Cessac E,et al.Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination[J].Journal of Environmental Quality,2005,34(5):1497-1507.
    [28]Zorrig W,Rouached A,Shahzad Z,et al.Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce[J].J Plant Physiol,2010,167(15):1239-1247.
    [29]Alexander P D,Alloway B J,Dourado A M.Genotypic variations in the accumulation of Cd,Cu,Pb and Zn exhibited by six commonly grown vegetables[J].Environ Pollut,2006,144(3):736-745.
    [30]Cataldo D A,Garland T R,Wildung R E.Cadmium uptake kinetics in intact soybean plants[J].Plant Physiol,1983,73(3):844-848.
    [31]Stritsis C,Claassen N.Cadmium uptake kinetics and plants factors of shoot Cd concentration[J].Plant and Soil,2013,367(1/2):591-603.
    [32]Casper B A,Cahill J F,Hyatt L A.Above-ground competition does not alter biomass allocated to roots in Abutilon theophrasti[J].New Phytologist,1998,140(2):231-238.
    [33]Chen W P,Li L Q,Chang A C,et al.Modeling uptake kinetics of cadmium by field-grown lettuce[J].Environmental Pollution,2008,152(1):147-152.
    [34]Chen W P,Li L Q,Chang A C,et al.Cadmium uptake by lettuce in fields treated with cadmium spikeled phosphorus fertilizers[J].Commun Soil Sci Plant Anal,2009,40:1124-1137.
    [35]Mckenna I M,Chaney R L,Williams F M.The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach[J].Environmental Pollution,1993,79(2):113-120.
    [36]Moustakas N K,Akoumianakis K A,Passam H C.Cadmium accumulation and its effect on yield of lettuce,radish,and cucumber[J].Communications in Soil Science and Plant Analysis,2001,32(11/12):1793-1802.
    [37]Ji P,Tang X,Jiang Y,et al.Potential of gibberellic acid 3(GA3)for enhancing the phytoremediation efficiency of Solanum nigrum L.[J].Bulletin of Environmental Contamination and Toxicology,2015,95(6):810-814.
    [38]黄益宗,朱永官,黄凤堂,等.镉和铁及其交互作用对植物生长的影响[J].生态环境,2004,13(3):406-409.HUANG Yi-zong,ZHU Yong-guan,HUANG Feng-tang,et al.Effects of cadmium and iron and their interactions on plants growth:A review[J].Ecology and Environment,2004,13(3):406-409.
    [39]万亚男,张燕,余垚,等.铁营养状况对黄瓜幼苗吸收转运镉和锌的影响[J].农业环境科学学报,2015,34(3):409-414.WAN Ya-nan,ZHANG Yan,YU Yao,et al.Effects of iron supply on cadmium and zinc uptake and translocation by cucumber seedlings[J].Journal of Agro-Environment Science,2015,34(3):409-414.
    [40]杨芸,周坤,徐卫红,等.外源铁对不同品种番茄光合特性、品质及镉积累的影响[J].植物营养与肥料学报,2015,21(4):1006-1015.YANG Yun,ZHOU Kun,XU Wei-hong,et al.Effect of exogenous iron on photosynthesis,quality,and accumulation of cadmium in different varieties of tomato[J].Journal of Plant Nutrition and Fertilizer,2015,21(4):1006-1015.
    [41]张晗芝,郭庆军,杨俊兴,等.镉胁迫下蓖麻对镉及矿质元素的富集特征[J].生态环境学报,2015,24(2):323-328.ZHANG Han-zhi,GUO Qing-jun,YANG Jun-xing,et al.Cadmium and mineral nutrients accumulation in various genotypes of castor under cadmium stress[J].Ecology and Environment Sciences,2015,24(2):323-328.
    [42]关昕昕,严重玲,刘景春,等.钙对镉胁迫下小白菜生理特性的影响[J].厦门大学学报(自然科学版),2011,50(1):132-137.GUAN Xin-xin,YAN Chong-ling,LIU Jing-chun,et al.Effect of calcium on physiological property of Brassica chinensis L.under cadmium stress[J].Journal of Xiamen University(Natural Science),2011,50(1):132-137.
    [43]郭秀璞,孔祥生,张妙霞,等.锌对小麦镉毒害的缓解效应[J].河南农业大学学报,1999,33(2):211-214.GUO Xiu-pu,KONG Xiang-sheng,ZHANG Miao-xia,et al.Buffer effect of zinc on cadmium toxic of wheat[J].Journal of Henan Agricultural University,1999,33(2):211-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700