广西水稻土镉有效性、水稻镉富集系数与土壤性质的关系研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship among Bioavailability Cadmium and Cadmium Enrichment Coefficient in Rice and Paddy Soil Properties in Guangxi
  • 作者:李慧敏 ; 方圆 ; 唐翠荣 ; 顾明华 ; 雷静 ; 窦飞 ; 谭力 ; 陈宏 ; 王丽萍
  • 英文作者:LI Hui-min;FANG Yuan;TANG Cui-rong;GU Ming-hua;LEI Jing;DOU Fei;TAN Li;CHEN Hong;WANG Li-ping;Faculty of Agriculture,Guangxi University;Guangxi Subtropical Crops Reserch Institute;
  • 关键词: ; 土壤性质 ; 富集系数 ; 相关性 ; 影响因子
  • 英文关键词:Cadmium;;Soil properties;;Enrichment coefficient;;Correlation;;Impact factor
  • 中文刊名:XNYX
  • 英文刊名:Southwest China Journal of Agricultural Sciences
  • 机构:广西大学农学院;广西壮族自治区亚热带作物研究所;
  • 出版日期:2018-12-28
  • 出版单位:西南农业学报
  • 年:2018
  • 期:v.31
  • 基金:国家自然科学基金资助项目(41201517);国家自然科学基金资助项目(41561092);; 国家高技术研究发展计划(863计划)(2013AA06A209);; 广西直属公益性科研院所基本科研业务费专项(桂热研201608)
  • 语种:中文;
  • 页:XNYX201812036
  • 页数:7
  • CN:12
  • ISSN:51-1213/S
  • 分类号:240-246
摘要
【目的】开展广西水稻土镉有效性、水稻镉富集系数与土壤性质的关系研究,为降低石灰岩地区土壤镉迁移及稻米镉累积提供理论参考依据。【方法】以广西不同地方的65个水稻土及相应的Y两优品种系列水稻为研究对象,分析土壤理化性质、水稻各部位镉含量、土壤有效镉/总镉、水稻各部位对镉的富集系数与土壤性质的关系,以及影响土壤镉有效性和糙米镉富集的主要影响因子。【结果】土壤镉超标率为67. 69%,糙米超标率为41. 54%。土壤镉有效性受到铁、锰形态的影响,有效镉/总镉与总铁、总锰呈显著负相关,与有效铁呈显著正相关;土壤p H、有机质、交换性钙、总铁和总锰显著影响水稻对镉的富集能力,其中,糙米镉富集系数与pH值、交换性钙含量呈极显著负相关,与有机质、总铁、总锰呈显著负相关。总锰和有效锰是决定土壤镉有效性的主要影响因子,镉有效性的线性回归方程为:有效镉/总镉=0. 491-0. 167×总锰+0. 004×有效锰;交换性钙和总锰是决定糙米镉富集能力的主要影响因子,糙米镉富集系数线性回归方程为:糙米镉富集系数=0. 493-0. 006×交换性钙-0. 156×总锰。【结论】广西稻米超标率低于稻田土壤镉超标率。在所研究的土壤性质中,锰形态是影响土壤镉有效性的主要因子,总锰、交换性钙含量是影响稻米富集镉的主要因子。
        【Objective】To provide a reference for reducing the cadmium accumulation of rice in limestone areas,the correlation coefficient between the soil bioavailable cadmium and cadmium enrichment coefficient of each part of the rice and soil properties in Guangxi Province was investigated.【Method】65 pairs of soil and rice cultivar( Y-Liangyou) were collected from paddy fields in Guangxi Province to investigate the relationship among ratios of paddy soil bioavailable/total cadmium and brown rice cadmium concentrations and paddy soil properties factors,and the main factors which influence bioavailable cadmium and cadmium concentrations in brown rice.【Result】The cadmium excess rate of soil was 67. 69 % and the brown rice excess rate was 41. 54 %. Soil cadmium effectiveness under the influence of Fe,Mn forms. Both bioavailable cadmium and total cadmium concentrations in paddy soil were significantly negatively correlated with soil total iron,manganese concentrations,while positively correlated with bioavailable iron concentrations. p H,organic matter,exchangeable calcium and total iron and total manganese could significant effect the cadmium enrichment capability of rice. Cadmium enrichment coefficient of brown rice was significantly negatively correlated with p H,exchangeable calcium and was extremely significantly negative correlation with organic matter,iron,manganese. In addition, total manganese and bioavailable manganese concentrations were the main impact factors affected soil bioavailable cadmium. It is made that the correlation ratio analysis of bioavailable cadmium/total cadmium,total manganese and bioavailable manganese concentrations by use of univariate linear regression equation: Ratio( bioavailable cadmium/total cadmium) = 0. 491-0. 167 × C( total manganese) +0. 004 × C( bioavailable manganese). Brown rice cadmium in-take was influenced by total manganese concentrations,the correlation analysis of enrichment coefficient of brown rice and exchangeable calcium and total manganese concentrations: Ratio( enrichment coefficient of brown rice) = 0. 493-0. 006 × C( exchangeable calcium)-0.156 × C( total manganese).【Conclusion】The over-limit rate of brown rice was lower than soil in Guangxi Province. The manganese speciation was the most critical factors that affected the effectiveness of soil cadmium,while the total manganese and exchange calcium content of soil were mostly the main factors that reduced the Cd concentration in rice in Guangxi Province.
引文
[1]夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(3):289-298.
    [2]环境保护部.环境保护部和国土资源部发布全国土壤污染状况调查公报[OL]. 2014. http://www. mee. gov. cn/gkml/sthjbgw/qt/201404/t20140417_270670. htm.
    [3]Sebastian A,Prasad M N V. Cadmium minimization in rice. A review[J]. Agronomy for Sustainable Development,2014,34(1):155-173.
    [4]Meharg A A,Norton G,Deacon C,et al. Variation in Rice Cadmium Related to Human Exposure[J]. Environmental Science&Technology,2013,47(11):5613-5618.
    [5]Liu X J,Tian G J,Jiang D,et al. Cadmium(Cd)distribution and contamination in Chinese paddy soils on national scale[J]. Environmental Science&Pollution Research International,2016,23(18):1
    [6]Yu H Y,Liu C P,Zhu J S,et al. Cadmium availability in rice paddy fields from a mining area:The effects of soil properties highlighting iron fractions and p H value[J]. Environmental Pollution,2016,209(1):38-45.
    [7]Liu C S,Chang C Y,Fei Y H,et al. Cadmium accumulation in edible flowering cabbages in the Pearl River Delta,China:Critical soil factors and enrichment models[J]. Environmental Pollution,2018,233:880-888.
    [8]Zhu P,Liang X X,Wang P,et al. Assessment of dietary cadmium exposure:A cross-sectional study in rural areas of south China[J].Food Control,2016,62:284-290.
    [9]刘文菊,张西科,尹君,等.镉在水稻根际的生物有效性[J].农业环境科学学报,2000,19(3):184-187.
    [10]蓝小龙,宁增平,肖青相,等.广西龙江沉积物重金属污染现状及生物有效性[J].环境科学,2018,39(2):748-757.
    [11]Wang M,Chen W P,Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,Southern China[J]. Chemosphere,2016(144):346-351.
    [12]Zhao F J,Ma Y B,Zhu Y G,et al. Soil contamination in China:current status and mitigation strategies[J]. Environmental Science&Technology,2015,49(2):750-759.
    [13]周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应[J].应用生态学报,1994,5(4):438-441.
    [14]Adams M L,Zhao F J,Mc Grath S P,et al. Predicting Cadmium Concentrations in Wheat and Barley Grain Using Soil Properties[J].Journal of Environmental Quality,2004,33(2):532-41.
    [15]蔡春婷,汤克丽,许旭萍,等.镉铅复合胁迫下根表铁锰氧化胶膜厚度对美洲商陆富集镉的影响[J].环境科学学报,2017,37(1):298-307.
    [16]苗亚琼,林清.广西土壤重金属镉污染及对人体健康的危害[J].环境与可持续发展,2016,41(5):171-173.
    [17]项萌,张国平,李玲,等.广西铅锑矿冶炼区土壤剖面及孔隙水中重金属污染分布规律[J].环境科学,2012,33(1):266-272.
    [18]翟丽梅,陈同斌,廖晓勇,等.广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征[J].环境科学学报,2008,28(6):1206-1211.
    [19]余贵芬,蒋新,孙磊,等.有机物质对土壤镉有效性的影响研究综述[J].生态学报,2002,22(5):770-776.
    [20]吴浩杰,周兴,鲁艳红,等.紫云英翻压对稻田土壤镉有效性及水稻镉积累的影响[J].中国农学通报,2017,33(16):105-111.
    [21]焦文涛,蒋新,余贵芬,等.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学,2005,24(5):545-549.
    [22]王祖伟,吉卫星,张辉.土壤盐化过程中阳离子对镉的形态分布影响[J].生态环境学报,2012,21(6):1121-1124.
    [23]宗良纲,徐晓炎.土壤中镉的吸附解吸研究进展[J].生态环境学报,2003,12(3):331-335.
    [24]廖柏寒,曾敏,张永,等. CaCO3对Cd和几种营养元素在红壤-黄豆系统中的调控作用[J].水土保持学报,2008,22(6):57-61.
    [25]Choi J. Geochemical modeling of cadmium sorption to soil as a function of soil properties[J]. Chemosphere,2006,63(11):1824-1834.
    [26]Kashem M A,Singh B R. Transformations in soil phase species of metal as affected by flooding and organic matter[J]. Communication in Soil Science and Plant Analysis,2004,35(9-10):1435-1456.
    [27]王小明,杨凯光,孙世发,等.水铁矿的结构、组成及环境地球化学行为[J].地学前缘,2011,18(2):339-347.
    [28]刘凡,谭文峰,刘桂秋,等.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型[J].土壤学报,2002,39(5):699-706.
    [29]Tack F M G,Van Ranst E,Lievens C,et al. Soil solution Cd,Cu and Zn concentrations as affected by short-time drying or wetting:The role of hydrous oxides of Fe and Mn[J]. Geoderma,2006,137(1-2):83-89.
    [30]姜明,吕宪国,杨青,等.湿地铁的生物地球化学循环及其环境效应[J].土壤学报,2006,43(3):493-499.
    [31]黄益宗,朱永官,黄凤堂,等.镉和铁及其交互作用对植物生长的影响[J].生态环境,2004,13(3):406-409.
    [32]Zhou H,Zeng M,Zhou X,et al. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice(Oryza sativa L.)cultivars[J]. Plant Soil,2015,386(1-2):317-329.
    [33]Sasaki A,Yamaji N,Ma J F. Overexpression of Os HM3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany,2014,65(20):6013-6021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700