Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Temperature Deformation Behavior of Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N Low-nickel Type Duplex Stainless Steel
  • 作者:钱昊 ; 杨银辉 ; 曹建春 ; 苏煜森
  • 英文作者:QIAN Hao;YANG Yinhui;CAO Jianchun;SU Yusen;College of Materials Science and Engineering, Kunming University of Science and Technology;
  • 关键词:双相不锈钢 ; 热变形 ; 动态再结晶 ; 本构方程 ; 热加工图
  • 英文关键词:duplex stainless steel;;hot deformation;;dynamic recrystallization;;constitutive equation;;hot working drawing
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:昆明理工大学材料科学与工程学院;
  • 出版日期:2019-06-20
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51461024)~~
  • 语种:中文;
  • 页:CLDB201912023
  • 页数:7
  • CN:12
  • ISSN:50-1078/TB
  • 分类号:125-131
摘要
采用Gleeble-3800热力模拟实验机在温度为1 123~1 423 K,应变速率为0.01~10 s~(-1)的条件下对Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢进行热压缩实验,以研究其高温热压缩变形机理和组织演变规律,确定了应力水平常数α值,依照双曲正弦方程,建立了Z参数的峰值流变应力本构方程,并且绘制了不同应变量下的热加工图。研究表明:在发生动态再结晶的低应变速率0.01~0.1 s~(-1)的高温1 323~1 423 K区域,峰值应力所对应的应变值越小,奥氏体的动态再结晶越容易发生。相同应变速率下,奥氏体相随变形温度升高由动态回复向动态再结晶组织转变。铁素体动态再结晶主要发生在1 123~1 223 K中低温区。基于热变形方程计算得到该双相不锈钢的表观形变激活能(Q=578.46 kJ/mol)高于2205双相不锈钢(451 kJ/mol),其表观应力指数n=8.439 8,表明它的变形机制主要是以晶格自扩散控制的稳定结构模型为主。热加工图分析表明,随着应变量的增加,在较高应变速率区域失稳区增大。确定的最佳热加工区域的条件:应变速率为0.01~0.08 s~(-1),温度为1 323~1 423 K,该区域功率耗散系数都较大,为0.30~0.52,该条件下试验钢热变形以奥氏体动态再结晶为主。
        Using Gleeble-3800 thermal simulation machine, the hot compression experiment was conducted to investigate the deformation mechanism and microstructure evolution of Fe-18 Cr-9 Mn-1.1 Ni-1.1 Mo-0.2 N duplex stainless steel(DSS) in the temperature of 1 123—1 423 K, and the strain rate of 0.01—10 s~(-1). According to the hyperbolic sine equation, the peak flow stress constitutive equation of the Z parameter was established after determining the value of stress level constant α, meanwhile, the thermal processing drawings under different strain have been drawn. In the dynamic recrystallization(DRX) region of low deformation strain rate 0.01—0.1 s~(-1)and high deformation temperature 1 323—1 423 K, the smaller value of strain corresponding to the peak stress, the easier occurring of austenite DRX. At the same strain rate, the auste-nite phases change from dynamic recovery to DRX with the increase of deformation temperature. The ferrite DRX mainly occurred in the middle deformation temperature region of 1 123—1 223 K. The deformation apparent activation energy Q was calculated as 578.46 kJ/mol based on thermal deformation equation, which is higher than that of 2205 DSS(451 kJ/mol), and the apparent stress exponent n was calculated as 8.439 8, indicated that the deformation mechanism is structure stability model based on lattice self-diffusion controlled. The analysis of hot processing maps shows that the instable regions gradually increase with the increase of strain on the condition of high strain rates. The optimized thermal processing area was determined to be in the strain rate of 0.01—0.08 s~(-1), in the deformation temperature of 1 323—1 423 K, and the corresponding high values of power dissipation coefficients are between 0.30—0.52, thus, the austenite DRX occurred under this deformation conditions for tested steels.
引文
1 Charles J,Chemelle P,Hu J C,et al.Word Iron & Steel,2011,11(6),1(in Chinese).Charles J,Chemelle P,胡锦程,et al.世界钢铁,2011,11(6),1.
    2 Gao W,Luo J M,Yang J J.Ordnance Material Science and Engineering,2005(3),61(in Chinese).高娃,罗建民,杨建君.兵器材料科学与工程,2005(3),61.
    3 Zhang Guoxin,Li Shuangquan.Petrochemical Equipment Technology,2007,28(4),55(in Chinese).张国信,李双权.石油化工设备技术,2007,28(4),55.
    4 Du C F,Zhan F,Yang Y H,et al.Metallic Functional Materials,2010(5),63(in Chinese).杜春风,詹凤,杨银辉,等.金属功能材料,2010(5),63.
    5 Yamamoto Y,Santella M L,Liu C T,et al.Materials Science & Engineering:A,2009,524(1-2),176.
    6 Huang Y L,Wang J B,Ling X S,et al.Materials Review,2008,22(s3),173(in Chinese).黄有林,王建波,凌学士,等.材料导报,2008,22(s3),173.
    7 Li L F,Yang W Y,Sun Z Q.Acta Metallurgica Sinica,2004(12),1257(in Chinese).李龙飞,杨王玥,孙祖庆.金属学报,2004(12),1257.
    8 Zeng J S,Xiong J,Shi W,et al.Materials Science and Technology.2013,21(2),72(in Chinese).曾敬山,熊杰,史文,等.材料科学与工艺,2013,21(2),72.
    9 Wu R H,Zhu H T,Zhang H B,et al.Journal of Shanghai Jiaotong University,2001(3),339(in Chinese).吴瑞恒,朱洪涛,张鸿冰,等.上海交通大学学报,2001(3),339.
    10 Su Yusen,Yang Yinhui,Cao Jianchun,et al.Acta Metallurgica Sinica,2018,54(4),485(in Chinese).苏煜森,杨银辉,曹建春,等.金属学报,2018,54(4),485.
    11 Du S W,Chen S M.Transactions of Materials and Heat Treatment,2016(3),223(in Chinese).杜诗文,陈双梅.材料热处理学报,2016(3),223.
    12 Zahiri S H,Davies C H J,Hodgson P D.Scripta Materialia,2005,52(4),299.
    13 Zou D N,Wu K,Han Y,et al.Materials & Design,2013,51,975.
    14 Chen Lei,Wang Longmei,Du Xiaojian,et al.Acta Metallurgica Sinica,2010,46(1),52(in Chinese).陈雷,王龙妹,杜晓建,等.金属学报,2010,46(1),52.
    15 Gironès A,Llanes L,Anglada M,et al.Materials Science & Engineering A,2004,367(1-2),322.
    16 Prasad Y V R K,Gegel H L,Doraivelu S M,et al.Metallurgical Tran-sactions A,1984,15,1883.
    17 Huang F X,Yin P,Li S S,et al.Journal of Chongqing Institute of Technology(Natural Science),2010,24(1),92(in Chinese).黄福祥,尹平,李司山,等.重庆理工大学学报(自然科学),2010,24(1),92.
    18 Li Dongfeng,Zhang Duanzheng,Liu Shengdan,et al.Transactions of Nonferrous Metals Society of China,2016,26(6),1491.
    19 Cabrera J M,Mateo A,Llanes L,et al.Journal of Materials Processing Technology,2003,143-144,321.
    20 Guo J F,Zhou X D,Li H.Transactions of Materials and Heat Treatment,2014,35(12),128(in Chinese).郭俊锋,周旭东,李汉.材料热处理学报,2014,35(12),128.
    21 He A,Yang X Y,Xie G L,et al.Journal of Iron and Steel Research,2015(8),34(in Chinese).何岸,杨晓雅,谢甘霖,等.钢铁研究学报,2015(8),34.
    22 Chen H Q,Bai J X,Qi H P,et al.Journal of Mechanical Engineering,2014,50(16),89(in Chinese).陈慧琴,柏金鑫,齐会萍,等.机械工程学报,2014,50(16),89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700