冷冻干燥浸渍法制备具有高分散铁物种和强金属-载体相互作用的FeZSM-5催化剂(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of highly dispersed iron species over ZSM-5 with enhanced metal-support interaction through freeze-drying impregnation
  • 作者:范立耸 ; 程党国 ; 陈丰秋 ; 詹晓力
  • 英文作者:Lisong Fan;Dangguo Cheng;Fengqiu Chen;Xiaoli Zhan;Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering,Zhejiang University;
  • 关键词: ; ZSM-5分子筛 ; 冷冻干燥 ; 浸渍法 ; 金属与载体相互作用 ; 金属粒径
  • 英文关键词:Iron;;ZSM-5 zeolite;;Freeze drying;;Impregnation;;Metal-support interaction;;Metal size
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:浙江大学化学工程与生物学院浙江省化工高效制造技术重点实验室;
  • 出版日期:2019-05-29
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Key R&D Program of China(2016YFA0202900);; the National Natural Science Foundation of China(21622606);; Zhejiang Provincial Natural Science Foundation of China(LR18B060001);; the Fundamental Research Funds for the Central Universities~~
  • 语种:英文;
  • 页:CHUA201907014
  • 页数:8
  • CN:07
  • ISSN:21-1601/O6
  • 分类号:167-174
摘要
负载型催化剂在现代化工中发挥着重要作用.其中,金属与载体的相互作用是负载型催化剂的重要特性.浸渍法是制备这类催化剂的一种简便方法.然而,传统浸渍法在浸渍达到平衡后采用蒸发干燥时,大量金属前驱体在毛细管力的作用下沿着孔道迁移并堆积在载体表面,焙烧后形成大块的金属团簇,这使得到的催化剂中金属与载体相互作用较弱.有研究者在浸渍溶液中添加高粘度物质来降低毛细管力的影响,或者采用微波干燥来减少团簇的产生,但总体上关于浸渍法中增强金属与载体相互作用的通用性方法研究很少.为此,本文采用冷冻干燥对传统的浸渍法进行改进.冷冻干燥是一种将冰冻样品置于真空条件下使溶剂升华的干燥方式,在化学上主要用于制备纳米金属粉末,很少用来制备金属负载型催化剂.本文以~(57)FeZSM-5为例,采用传统蒸发干燥和改进的冷冻干燥方法制备了两种催化剂,采用超导量子干涉仪(SQUID),H_2-TPR和穆斯堡尔谱等表征手段研究了两者在铁物种组成和N2O分解活性上的区别,并提出了形成机理.SQUID测试表明,两种催化剂均具有铁磁性和顺磁性特性,这意味着催化剂中可能存在α-Fe_2O_3,以及与骨架相连的二价或三价铁物种.H_2-TPR结果显示,冻干催化剂中含有更少的铁物种数和更多的Fe~(2+)含量.进一步的穆斯堡尔谱表征不仅印证了上述结果,而且给出了铁物种的定量结果.相比于传统的蒸干催化剂,冻干催化剂拥有更多与分子筛骨架铝相连的铁物种,说明冷冻干燥可以增强金属与载体的相互作用.在冻干催化剂中,更多的铁物种存在于孔道内,说明冷冻干燥对铁物种有着良好的限域作用.此外,冻干催化剂含有更多纳米级金属氧化物,大块团簇较少,金属物种的平均尺寸小于蒸干催化剂.冻干催化剂在N_2O分解中更高的活性也证明了铁物种结构的变化.基于上述结果,本文提出了不同干燥方式下铁物种的形成机理.在蒸干催化剂中,由于蒸发过程中毛细管力的存在,原本在载体中均匀分散的铁前驱体被转移到载体表面,形成大量的大块铁团簇.而对于冻干催化剂,溶剂是通过升华的方式去除,铁前驱体不会受干燥的影响而保持均匀分布的状态.由于ZSM-5分子筛拥有丰富的孔隙,大量铁被限制在狭窄的孔道中,所形成的铁物种尺寸更小,同时铁有更多机会与骨架铝发生相互作用,从而达到增强金属与载体相互作用的目的.该方法属于浸渍法的通用性改进,可以在制备其他负载型催化剂时调控金属与载体的相互作用以及金属尺寸大小.
        Supported metal catalysts play a vital role in the chemical industry, and the metal-support interaction is an important property of the catalyst. However, in the traditional impregnation method, it is difficult to obtain sufficient metal-support interactions owing to the mobility of the metal precursor during evaporation drying. Here, freeze drying is applied during impregnation instead of evaporation drying for enhancing the metal-support interactions. ~(57) Fe ZSM-5 was chosen as a representative catalyst. A quantitative analysis was conducted based on M?ssbauer spectroscopy. Compared with traditional evaporation-drying catalyst, freeze-drying catalyst has stronger metal-support interactions. In addition, more iron species are confined in the channel and smaller metal sizes and less diversity are obtained. The compositional change is also proved because of the superior performance of the freeze-drying catalyst during N_2 O decomposition. This method can be extended to other supported metal catalysts prepared through an impregnation method, which can be used to tune the metal-support interactions and metal sizes.
引文
[1]H.Tang,Y.Su,B.Zhang,A.F.Lee,M.A.Isaacs,K.Wilson,L.Li,Y.Ren,J.Huang,M.Haruta,B.Qiao,X.Liu,C.Jin,D.Su,J.Wang,T.Zhang,Sci.Adv.,2017,3,e1700231/1-e1700231/8.
    [2]C.Linsmeier,E.Taglauer,Appl.Catal.A,2011,391,175-186.
    [3]G.M.Mullen,E.J.Evans,B.C.Siegert,N.R.Miller,B.K.Rosselet,L.Sabzevari,A.Brush,Z.Duan,C.B.Mullins,React.Chem.Eng.,2018,3,75-85.
    [4]B.Jin,Y.Wei,Z.Zhao,J.Liu,Y.Li,R.Li,A.Duan,G.Jiang,Chin.J.Catal.,2017,38,1629-1641.
    [5]Z.Li,X.Yang,Y.Yang,Y.Tan,Y.He,M.Liu,X.Liu,Q.Yuan,Chem.Eur.J.,2018,24,409-415.
    [6]X.Qian,Y.Kuwahara,K.Mori,H.Yamashita,Chem.Eur.J.,2014,20,15746-15752.
    [7]H.Tang,F.Liu,J.Wei,B.Qiao,K.Zhao,Y.Su,C.Jin,L.Li,J.Liu,J.Wang,T.Zhang,Angew.Chem.Int.Ed.,2016,55,10606-10611.
    [8]J.C.Matsubu,S.Zhang,L.DeRita,N.S.Marinkovic,J.G.Chen,G.W.Graham,X.Pan,P.Christopher,Nat.Chem.,2017,9,120-127.
    [9]K.Wilson,A.F.Lee,Heterogeneous Catalysts for Clean Technology:Spectroscopy,Design,and Monitoring,VCH,Weinheim,2013,374.
    [10]G.Rothenberg,Catalysis:Concepts and Green Applications,VCH,Weinheim,2008,139.
    [11]J.Regalbuto,Catalyst Preparation:Science and Engineering,CRCPress,Boca Raton,2006,375-386.
    [12]T.Vergunst,F.Kapteijn,J.A.Moulijn,Appl.Catal.A,2001,213,179-187.
    [13]G.Bond,R.B.Moyes,D.A.Whan,Catal.Today,1993,17,427-437.
    [14]W.Abdelwahed,G.Degobert,S.Stainmesse,H.Fessi,Adv.Drug Deliv.Rev.,2006,58,1688-1713.
    [15]T.M.Eggenhuisen,P.Munnik,H.Talsma,P.E.de Jongh,K.P.de Jong,J.Catal.,2013,297,306-313.
    [16]X.Xi,Z.Nie,Y.Jiang,X.Xu,T.Zuo,Powder Technol.,2009,191,107-110.
    [17]O.A.Anunziata,M.G.Costa,A.R.Beltramone,Appl.Catal.A,2006,307,263-269.
    [18]S.Kachi,K.Momiyama,S.Shimzu,J.Phys.Soc.Jpn.,1963,18,106-116.
    [19]P.Sazama,B.Wichterlová,E.Tábor,P.??astny,N.K.Sathu,Z.Sobalík,A.Vondrová,J.Catal.,2014,312,123-138.
    [20]L.Luo,C.Dai,A.Zhang,J.Wang,M.Liu,C.Song,X.Guo,RSC Adv.,2015,5,29509-29512.
    [21]S.Song,G.Wu,W.Dai,N.Guan,L.Li,Catal.Sci.Technol.,2016,6,8325-8335.
    [22]X.Li,K.Zhu,J.Pang,M.Tian,J.Liu,A.I.Rykov,M.Zheng,X.Wang,X.Zhu,Y.Huang,B.Liu,J.Wang,W.Yang,T.Zhang,Appl.Catal.B,2018,224,518-532.
    [23]V.B.Aube?,O.Marie,J.Saussey,A.Plesniar,M.Daturi,N.Nguyen,C.Hamon,M.Mihaylov,E.Ivanova,K.Hadjiivanov,J.Phys.Chem.C,2009,113,8387-8393.
    [24]A.R.Overweg,M.W.J.Crajé,A.M.van der Kraan,I.W.C.E.Arends,A.Ribera,R.A.Sheldon,J.Catal.,2004,223,262-270.
    [25]E.Tabor,K.Závěta,N.K.Sathu,A.Vondrova,P.Sazama,Z.Sobalik,Catal.Today,2011,175,238-244.
    [26]P.Sazama,N.K.Sathu,E.Tabor,B.Wichterlová,?.Sklenák,Z.Sobalík,J.Catal.,2013,299,188-203.
    [27]K.Lázár,O.Pozdnyakova,A.Wootsch,P.Fejes,Hyperfine Interact.,2006,167,779-784.
    [28]G.Moretti,G.Fierro,G.Ferraris,G.B.Andreozzi,V.J.Naticchioni,J.Catal.,2014,318,1-13.
    [29]G.Fierro,G.Moretti,G.Ferraris,G.B.Andreozzi,Appl.Catal.B,2011,102,215-223.
    [30]P.Xie,Y.Luo,Z.Ma,C.Huang,C.Miao,Y.Yue,W.Hua,Z.Gao,J.Catal.,2015,330,311-322.
    [31]B.E.R.Snyder,P.Vanelderen,M.L.Bols,S.D.Hallaert,L.H.B?ttger,L.Ungur,K.Pierloot,R.A.Schoonheydt,B.F.Sels,E.I.Solomon,Nature,2016,536,317-321.
    [32]G.Sádovská,E.Tabor,P.Sazama,M.Lhotka,M.Bernauer,Z.Sobalík,Catal.Commun.,2017,89,133-137.
    [33]Q.Zhao,W.H.Chen,S.J.Huang,Y.C.Wu,H.K.Lee,S.B.Liu,J.Phys.Chem.B,2002,106,4462-4469.
    [34]G.D.Pirngruber,P.K.Roy,R.Prins,J.Catal.,2007,246,147-157.
    [35]K.Sun,H.Xia,E.Hensen,R.van Santen,C.Li,J.Catal.,2006,238,186-195.
    [36]K.A.Dubkov,N.S.Ovanesyan,A.A.Shteinman,E.V.Starokon,G.I.Panov,J.Catal.,2002,207,341-352.
    [37]J.H.Park,J.H.Choung,I.S.Nam,S.W.Ham,Appl.Catal.B,2008,78,342-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700