镍包SiC_p增强Ni35合金激光熔覆层的显微组织及摩擦磨损性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Friction and Wear Performance of Ni35 Alloy Laser-Cladding Layer Reinforced by Ni-Coated SiC_p
  • 作者:白炎 ; 潘成刚 ; 丁紫正
  • 英文作者:BAI Yan;PAN Chenggang;DING Zizheng;Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology;Guangzhou JFE Steel Sheet Company Ltd.;
  • 关键词:激光熔覆 ; 镍包SiC_p ; Ni35合金 ; 摩擦磨损性能 ; 显微组织
  • 英文关键词:laser cladding;;Ni-coated SiC_p;;Ni35 alloy;;friction and wear performance;;microstructure
  • 中文刊名:GXGC
  • 英文刊名:Materials for Mechanical Engineering
  • 机构:武汉科技大学钢铁冶金及资源利用教育部重点实验室;广州JFE钢板有限公司;
  • 出版日期:2018-10-20
  • 出版单位:机械工程材料
  • 年:2018
  • 期:v.42;No.362
  • 基金:国家自然科学基金资助项目(51375353)
  • 语种:中文;
  • 页:GXGC201810008
  • 页数:8
  • CN:10
  • ISSN:31-1336/TB
  • 分类号:38-44+49
摘要
采用激光熔覆工艺在H13模具钢基体表面制备镍包SiC_p增强Ni35合金熔覆层,研究了熔覆层的显微组织以及在25,600℃下的摩擦磨损性能。结果表明:熔覆层由γ-Ni(Fe)+M_3(B,Si)共晶相、M_(23)C_6型碳化物、M_7C_3型碳化物、Ni_(31)Si_(12)镍硅化物和石墨组成;在不同温度下摩擦磨损后,熔覆层表面的显微硬度均高于基体的,磨损体积小于基体的;25℃下熔覆层的耐磨性能较基体的明显提高,且提高效果高于600℃下的;25℃下熔覆层的磨损机制主要为微磨粒磨损和黏着磨损,600℃下的则主要为磨粒磨损、黏着磨损以及轻微的氧化磨损。
        Ni-coated SiC_preinforced Ni35 alloy laser-cladding layer was prepared on surface of H13 die steel substrate by laser cladding technique.The microstructure and the friction and wear performance at 25,600℃of the cladding layer were studied.The results show that the cladding layer was composed ofγ-Ni(Fe)+ M_3(B,Si)eutectic phase,M_(23) C_6 carbide,M_7 C_3 carbide,Ni_(31) Si_(12) nickel-silicide,and graphite.After friction and wear at different temperatures,the cladding layer had a higher surface microhardness and a lower wear volume than the substrate.The wear resistance at 25 ℃ of the cladding layer was improved greatly comparing with that of the substrate,and the improvement effect was higher than that at 600℃.The wear mechanism at 25℃of the cladding layer was mainly micro-abrasive wear and adhesive wear,while that at 600℃ was abrasive wear,adhesive wear and slight oxidation wear.
引文
[1]李嘉宁.激光熔覆技术及应用[M].北京:化学工业出版社,2016.
    [2]何骅波,杨梦梦,黄晓波,等.螺杆钢表面不同激光熔覆层的耐磨与耐腐蚀性能[J].机械工程材料,2017,41(10):11-14.
    [3]陈瑶,汪金垄.扫描速度和稀土元素对激光熔覆(WC+SiC)Ni基复合涂层显微组织和性能的影响[J].机械工程材料,1999,23(5):14-17.
    [4] PAN C G,WANG H C,WANG H F,et al.Microstructure and thermal physical parameters of Ni60-Cr3C2 composite coating by laser cladding[J].Journal of Wuhan University of Technology(Mater Sci Ed),2010,25(6):991-995.
    [5]许伯藩,方军,史华忠,等.TiC量对激光熔覆金属陶瓷涂层的影响[J].机械工程材料,1998,22(1):20-22.
    [6] YIP M W,BARNES S,SARHAN A.Effects of laser cladding of silicon carbides particles and iron based powder[J].Applied Mechanics and Materials,2014,548/549:289-293.
    [7] ABBAS G, GHAZANFAR U.Two-body abrasive wear studies of laser produced stainless steel and stainless steel+SiC composite clads[J].Wear,2005,258(1):258-264.
    [8] LIU Z,JIAN L,TAO W.Preparation of WC-Co composite powder by electroless plating and its application in laser cladding[J].Materials Letters,2006,60(16):1956-1959.
    [9] LEON C A,DREW R A L.The influence of nickel coating on the wettability of aluminum on ceramics[J].Composites Part A:Applied Science and Manufacturing,2002,33(10):1429-1432.
    [10] HASHEMI S H,SHOJA-RAZAVI R.Laser surface heat treatment of electroless Ni-P-SiC coating on Al356alloy[J].Optics&Laser Technology,2016,85:1-6.
    [11]毛怀民.激光熔覆层裂纹控制方法与实践[D].天津:天津大学,2007.
    [12]何鹏.基于等离子堆焊的SiC改性金属基复合焊层的研究[D].武汉:武汉理工大学,2015.
    [13]周雪,何鹏,潘成刚,等.等离子堆焊镍包碳化硅增强镍基层的组织及磨损性能[J].材料保护,2014,47(12):13-17.
    [14]史华忠,许伯藩,张细菊.碳钢表面激光熔覆SiCp/Ni基合金复合涂层中SiCp的行为[J].钢铁研究学报,1998(2):38-41.
    [15] PAN Y,BAPTISTA J L.Chemical instability of silicon carbide in the presence of transition metals[J].Journal of the American Ceramic Society,1996,79(8):2017-2026.
    [16] GOESMANN F,SCHMID-FETZER R.Metals on 6H-SiC:Contact formation from the materials science point of view[J].Materials Science and Engineering:B,1997,46(1):357-362.
    [17] LI Q,SONG G M,ZHANG Y Z,et al.Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC[J].Wear,2003,254(3):222-229.
    [18]李强,雷廷权,王富耻,等.激光表面熔覆SiCp/Ni-Cr-B-Si-C涂层的组织演化及其相确定[J].中国激光,1999,26(1):80-84.
    [19] CAO Y,NYBORG L,YI D Q,et al.Study of reaction process on Ni/4H-SiC contact[J].Materials Science and Technology,2006,22(10):1227-1234.
    [20] LI Q,LEI T C, CHEN Y B,et al.Microstructural characterisation of laser clad coating of nickel based alloy with dissolved SiCp[J].Materials Science and Technology,1999,15(3):323-327.
    [21]赵龙志,刘武,刘德佳,等.SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J].材料工程,2017,45(3):88-94.
    [22]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001:90-93.
    [23]尹小定.H13钢表面CrAlN薄膜制备及其摩擦磨损性能的研究[D].太原:太原理工大学,2008.
    [24]丁紫正,潘成刚,常庆明,等.激光熔覆SiCp/Ni35覆层组织与磨损性能研究[J].特种铸造及有色合金,2017,37(8):886-890.
    [25]揭晓华,毛志远.5CrNiMo钢在高温磨损中的动态氧化行为[J].浙江大学学报,1998,32(6):769-776.
    [26] ANDERSSON P,HOLMBERG K.Limitations on the use of ceramics in unlubricated sliding applications due to transfer layer formation[J].Wear,1994,175(1):1-8.
    [27] OLIVEIRA C K N,RIOFANO R M M,CASTELETTI L C.Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels[J].Surface and Coatings Technology,2006,200(16):5140-5144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700