基于改进遗传算法的TS-S型ICPT系统谐振参数优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Resonant Parameters Optimization of TS-S Type ICPT System Based on Improved Genetic Algorithm
  • 作者:靳夏 ; 李欣
  • 英文作者:JIN Xia;LI Xin;School of Automation & Electrical Engineering,Lanzhou Jiaotong University;School of New Energy & Power Engineering,Lanzhou Jiaotong University;
  • 关键词:ICPT系统 ; 补偿网络 ; 参数优化 ; NSGA-II算法 ; 传输效率
  • 英文关键词:ICPT system;;compensation network;;parameter optimization;;NSGA-II algorithm;;transmission efficiency
  • 中文刊名:LZTX
  • 英文刊名:Journal of Lanzhou Jiaotong University
  • 机构:兰州交通大学自动化与电气工程学院;兰州交通大学新能源与动力工程学院;
  • 出版日期:2019-04-15
  • 出版单位:兰州交通大学学报
  • 年:2019
  • 期:v.38;No.193
  • 语种:中文;
  • 页:LZTX201902010
  • 页数:9
  • CN:02
  • ISSN:62-1183/U
  • 分类号:64-72
摘要
ICPT系统由于其特殊的结构形式,导致该系统漏电量大、传输效率低.针对此问题,提出采用改进遗传算法对系统谐振参数进行优化的解决方案.首先,建立了基于TS-S型补偿网络ICPT系统的非线性规划数学模型,并利用频率稳定性约束条件修正系统频率,保证系统稳定可靠;其次,运用快速非支配算法(nondominated sorting genetic algorithm II,NSGA-II),引入拥挤度比较运算算子进行谐振参数优化,最终实现传输效率最大化.仿真实验结果表明,NSGA-II算法能够更好地突破局部最优解的局限性,快速找到系统的全局最优参数,优化系统的最高传输效率可达97.2%.
        Since some problems such as large leakage current and low transmission efficiency are caused by the special structural form of the ICPT system,this paper proposes a solution to optimize the system resonance parameters by using the improved genetic algorithm.First,a nonlinear programming mathematical model of ICPT system based on TS-S compensation network is established and the system frequency is corrected by using the frequency stability constraints to insure the stability and reliability of the system.Then the transmission maximum efficiency is realized by introducing non-dominated sorting genetic algorithm(NSGA-II) and the congestion degree comparison operator to optimize the resonance parameters.The simulation and experimental results show that NSGA-II algorithm can well break through the limitations of the local optimal solution and quickly get the global optimal parameters of the system,while the maximum transmission efficiency of the optimized system can reach 97.2%.
引文
[1] COVIC G A,BOYS J T.Modern trends in inductive power transfer for transportation applications[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2013,1(1):28-41.
    [2] CHOI S Y,BEOM W G,SEOG Y J,et al.Advances in wireless power transfer systems for roadway-powered electric vehicles[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2015,3(1):18-36.
    [3] KELLING N A,COVIC G A,BOYS T T.A unity-power-factor IPT pickup for high-power applications[J].IEEE Transactions on Industrial Electronics,2010,57(2):744-751.
    [4] MADAWALA U K,THRIMAWITHANA D J.Current sourced bidirectional inductive power transfer system[J].IET Power Electronics,2011,4(4):471-480.
    [5] 武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004,24(5):63-66.
    [6] 张胡元,马殷元,徐镇华.磁谐振无线电能传输串并式模型频率分裂研究[J].兰州交通大学学报,2017,36(23):52-56.
    [7] KIM C G,SEO D H,YOU J S,et al.Design of a contactless battery charger for cellular phone[J].IEEE Transactions on Industrial Electronics,2001,48(6):1238-1247.
    [8] PEDDER D A G,BROWN A D,SKINNER J A.A contactless electrical energy transmission system[J].IEEE Transactions on Industrial Electronics,1999,46(1):23-30.
    [9] JANG Y,JOVANOVIC M M.A contactless electrical energy transmission system for portable-telephone battery chargers[J].IEEE Transactions on Industrial Electronics,2003,50(3):520-527.
    [10] SAKAMOTO H,HARADA K.A novel circuit for non-contact charging through electro-magnetic coupling[C]// Proceedings of 1995 International Conference on Power Electronics and Drive Systems.Fukuoka:IEEE Press,1995:168-174.
    [11] ABE H,SAKAMOTO H,HARADA K.A non-contact charger using resonant converter with parallel capacitor of the secondary coil[J].IEEE Transactions on Industrial Applications,1998,36(2):444-451.
    [12] LAOUAMER R,BRUNELLO M,FERRIEUX J P,et al.A multi-resonant converter for non-contact charging with electromagnetic coupling[C]//International Conference on Industrial Electronics.New Orleans:IEEE Press,1997:792-797.
    [13] LI S Q,LI W H,DENG J J,et al.A double-sided LCC compensation network and its tuning method for wireless power transfer[J].IEEE Transactions on Vehicular Technology,2015,64(6):2261-2273.
    [14] 赵志斌.基于NLP建模的ICPT系统参数优化[D].重庆:重庆大学,2012:56-66.
    [15] 孙跃,夏晨阳,戴欣.感应耦合电能传输系统互感耦合参数的分析与优化[J].中国电机工程学报,2010,30(33):44-50.
    [16] 林宁,姚缨英.恒压输出的无线电能传输系统设计[J].电力电子技术,2011,45(2):66-68.
    [17] 林抒毅,黄晓生.无线电能传输TS-S型补偿网络的建模与设计[J].福建工程学院学报,2016,14(3):269-273.
    [18] 莫汉秋,唐厚君,蓝建.基于LCL-SS谐振网络的无线电能传输系统设计[J].电力电子技术,2015,49(10):34-37.
    [19] 郝建波,李宗斌,赵丽萍.工步排序问题的约束模型及其遗传算法的求解[J].西安交通大学学报,2008,42(7):860-864.
    [20] 陈志敏,薛智文,赵德安.V级围岩隧道锚杆锚固参数优化模型试验研究[J].兰州交通大学学报,2017,36(1):5-11.
    [21] WANG C S,CONVIC G A,STIELAU O H.Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J].IEEE Transactions on Industrial Electronics,2004,51(1):148-157.
    [22] 杨国民.电磁谐振耦合无线电能传输技术的研究[D].辽阳:沈阳工业大学,2013:43-48.
    [23] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm NSGA-II[J].IEEE Transaction on Evolutionary Computation,2002,6(2):182-197.
    [24] 黄俊博.ICPT系统频率稳定性分析及耦合传输功率研究[D].重庆:重庆大学,2010:12-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700