新型多孔导电陶瓷负载银阴极在锌空气电池中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Porous Electronic Conducting Ceramics Loaded with Silver Nano Particles as Cathode for Zinc-Air Batteries
  • 作者:翁晓琳 ; 刘佩佩 ; 张亚鹏 ; 刘江 ; 刘美林
  • 英文作者:WENG Xiao-Lin;LIU Pei-Pei;ZHANG Ya-Peng;LIU Jiang;LIU Mei-Lin;Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology;School of Materials Science and Engineering, Georgia Institute of Technology;
  • 关键词:锌空气电池 ; 空气电极 ; 银纳米颗粒 ; 多孔钴酸锶镧基
  • 英文关键词:zinc-air battery;;air electrode;;silver nanoparticle;;porous La0.7Sr0.3CoO3-δ substrate
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:华南理工大学环境与能源学院新能源研究所广州市能源材料表面化学重点实验室;美国佐治亚理工学院材料科学与工程系;
  • 出版日期:2018-07-25 10:08
  • 出版单位:无机材料学报
  • 年:2018
  • 期:v.33;No.226
  • 基金:国家自然科学基金(21276097);; 广东省公益研究及能力建设专项基金(2014A010106008);; 广东省珠江人才计划引进创新创业团队项目(2014ZT05N200);; 国家自然科学基金委-广东省联合基金(U1601207)~~
  • 语种:中文;
  • 页:WGCL201808006
  • 页数:7
  • CN:08
  • ISSN:31-1363/TQ
  • 分类号:47-53
摘要
锌空气电池具有能量密度高、成本低及环保等优势,其空气电极的优劣对电池的输出性能起到决定性的作用。本研究采用一种新型的多孔钙钛矿氧化物La_(0.7)Sr(0.3)CoO_(3-δ)(LSC)作为陶瓷基底,负载银纳米颗粒作为催化剂,研究其作为锌空电池空气电极的性能。通过调整制备过程中造孔剂(淀粉)的含量,优选出性能最佳的Ag-LSC空气电极(阴极),与锌阳极组装成锌空气电池,进行电化学性能测试。结果表明,当LSC基底的孔隙率为~32%且银含量30 mg/cm~2时,制备的多孔陶瓷负载银阴极组装的锌空气电池功率密度最高(141 mW/cm~2)。在Ag-LSC空气电极表面涂一层聚四氟乙烯(PTFE)疏水材料后,锌空气电池的使用寿命得到显著延长。
        Zinc-air battery has great advantages such as high energy density, low cost and environmentally friendliness. Air electrode plays an important role in electrochemical performance of a zinc-air battery. In this paper, we report our study of a novel air electrode on which a porous perovskite ceramic La_(0.7)Sr(0.3)CoO_(3-δ)(LSC) with Ag nanoparticles directly grown. The porous LSC is used as substrate while Ag as catalyst. The porous structure of substrate attributes to the amount and dispersion of Ag nanoparticles which affect the electrochemical performance of air electrode. Therefore, the property of the Ag-LSC electrode is optimized by adjusting the mass content of pore-former(starch). Experimental results show that the Ag-LSC electrode, with a porosity of ~32% and a Ag load of ~30 mg/cm~2, exhibits the best performance in all tested samples, and a zinc-air battery assembled with such air electrode gives the maximum power density of 141 m W/cm. What's more, in order to ensure the gas diffusion channels, the hydrophilicity and hydrophobicity of the cathode is modified with PTFE to prevent flooding. After all that, the life-time of the zinc-air battery, with optimization by coating a PTFE layer as hydrophobic agent on the surface of the selected Ag-LSC electrode, prolongs significantly.
引文
[1]PEI P,WANG K,MA Z.Technologies for extending zinc–air battery’s cyclelife:a review.Applied Energy,2014,128:315–324.
    [2]SAPKOTA P,KIM H.Zinc–air fuel cell,a potential candidate for alternative energy.Journal of Industrial and Engineering Chemistry,2009,15(4):445–450.
    [3]LI Y,DAI H.Recent advances in zinc-air batteries.Chem.Soc.Rev.,2014,43(15):5257–5275.
    [4]FU J,CANO Z P,PARK M G,et al.Electrically rechargeable zinc-air batteries:progress,challenges,and perspectives.Advanced materials,2017,29(7):1–34.
    [5]LEE J-S,TAI KIM S,CAO R,et al.Metal-air batteries with high energy density:Li-air versus Zn-air.Advanced Energy Materials,2011,1(1):34–50.
    [6]RAHMAN M A,WANG X,WEN C.High energy density metal-air batteries:a review.Journal of the Electrochemical Society,2013,160(10):A1759–A1771.
    [7]WANG X,SEBASTIAN P J,SMIT M A,et al.Studies on the oxygen reduction catalyst for zinc–air battery electrode.Journal of Power Sources,2003,124(1):278–284.
    [8]YANG C.Preparation and characterization of electrochemical properties of air cathode electrode.International Journal of Hydrogen Energy,2004,29(2):135–143.
    [9]MA Z,PEI P,WANG K,et al.Degradation characteristics of air cathode in zinc air fuel cells.Journal of Power Sources,2015,274:56–64.
    [10]NEBURCHILOV V,WANG H,MARTIN J J,et al.A review on air cathodes for zinc–air fuel cells.Journal of Power Sources,2010,195(5):1271–1291.
    [11]WANG Z L,XU D,XU J J,et al.Oxygen electrocatalysts in metal-air batteries:from aqueous to nonaqueous electrolytes.Chem Soc Rev,2014,43(22):7746–7786.
    [12]LEE D U,XU P,CANO Z P,et al.Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries.J.Mater.Chem.A,2016,4(19):7107–7134.
    [13]FENG Y Y,ZHANG G R,MA J H,et al.Carbon-supported Pt^Ag nanostructures as cathode catalysts for oxygen reduction reaction.Physical Chemistry Chemical Physics,2011,13(9):3863–3872.
    [14]LOGLIO F,LASTRAIOLI E,BIANCHINI C,et al.Cobalt monolayer islands on Ag(111)for ORR catalysis.Chem Sus Chem,2011,4(8):1112–1117.
    [15]XIN L,ZHANG Z,WANG Z,et al.Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell.Frontiers in chemistry,2013,1(16):1–5.
    [16]WANG Z,XIN L,ZHAO X,et al.Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells.Renewable Energy,2014,62:556–562.
    [17]PECH-PECH I E,GERVASIO D F,GOD NEZ-GARCIA A,et al.Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction(ORR)in acid electrolytes:Part 1.Journal of Power Sources,2015,276(2015):365–373.
    [18]ESFANDIARI A,KAZEMEINI M,BASTANI D.Synthesis,characterization and performance determination of an Ag@Pt/C electrocatalyst for the ORR in a PEM fuel cell.International Journal of Hydrogen Energy,2016,41(45):20720–20730.
    [19]WANG T,KAEMPGEN M,NOPPHAWAN P,et al.Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries.Journal of Power Sources,2010,195(13):4350–4355.
    [20]CHENG F,CHEN J.Metal-air batteries:from oxygen reduction electrochemistry to cathode catalysts.Chem.Soc.Rev.,2012,41(6):2172–2192.
    [21]CAO R,LEE J S,LIU M,et al.Recent progress in non-precious catalysts for metal-air batteries.Advanced Energy Materials,2012,2(7):816–829.
    [22]KRAYTSBERG A,EIN-ELI Y.The impact of nano-scaled materials on advanced metal–air battery systems.Nano Energy,2013,2(4):468–480.
    [23]LIU P,LIU J,CHENG S,et al.A high-performance electrode for supercapacitors:silver nanoparticles grown on a porous perovskite-type material La0.7Sr 0.3Co O3-δsubstrate.Chemical Engineering Journal,2017,328:1–10.
    [24]GWON O,YOO S,SHIN J,et al.Optimization of La1-xSrxCo O3-δperovskite cathodes for intermediate temperature solid oxide fuel cells through the analysis of crystal structure and electrical properties.International Journal of Hydrogen Energy,2014,39(35):20806–20811.
    [25]WANG L,LUO X,BARBIERI D,et al.Controlling surface microstructure of calcium phosphate ceramic from random to custom-design.Ceramics International,2014,40(6):7889–7897.
    [26]DRILLET J F,HOLZER F,KALLIS T,et al.Influence of CO2 on the stability of bifunctional oxygen electrodes for rechargeable zinc/air batteries and study of different CO2 filter materials.Physical Chemistry Chemical Physics,2001,3(3):368–371.
    [27]WANG Q,LUO J,ZHONG Z,et al.CO2 capture by solid adsorbents and their applications:current status and new trends.Energy Environ.Sci.,2011,4(1):42–55.
    [28]HAN J J,LI N,ZHANG T Y.Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte.Journal of Power Sources,2009,193(2):885–889.
    [29]HU J,LIU Q,SHI L,et al.Silver decorated La Mn O3 nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes.Applied Surface Science,2017,402:61–69.
    [30]HE Q,YANG X,CHEN W,et al.Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl)single crystals.Physical Chemistry Chemical Physics,2010,12(39):12544–12555.
    [31]INABA M,ANDO M,HATANAKA A,et al.Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties.Electrochimica Acta,2006,52(4):1632–1638.
    [32]LIMA F H B,DE CASTRO J F R,TICIANELLI E A.Silvercobalt bimetallic particles for oxygen reduction in alkaline media.Journal of Power Sources,2006,161(2):806–812.
    [33]YU A,LEE C,LEE N S,et al.Highly efficient silver-cobalt composite nanotube electrocatalysts for favorable oxygen reduction reaction.ACS applied materials&interfaces,2016,8(48):32833–32841.
    [34]WU X,CHEN F,ZHANG N,et al.Activity trends of binary silver alloy nanocatalysts for oxygen reduction reaction in alkaline media.Small,2017,13(15):1–8.
    [35]CHO YB,MOON S,LEE C,et al.One-pot electrodeposition of cobalt flower-decorated silver nanotrees for oxygen reduction reaction.Applied Surface Science,2017,394:267–274.
    [36]WANG P,YAO L,WANG M,et al.XPS and voltammetric studies on La1-xSrxCo O3-δperovskite oxide electrodes.Journal of Alloys and Compounds,2000,311:53–56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700