小鼠神经胶质瘤单次高剂量放射治疗脑损伤评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of radiation-induced brain injury after signal high-dose radiotherapy for mouse glioma
  • 作者:李深 ; 高月 ; 蓝晓艳 ; 秦华民 ; 储成艳
  • 英文作者:LI Shen;GAO Yue;LAN Xiao-yan;QIN Hua-min;CHU Cheng-yan;Department of Neurology,Dalian Municipal Central Hospital,Dalian Medical University;Second Hospital of Dalian Medical University;
  • 关键词:神经胶质瘤 ; 高剂量放射治疗 ; 脑损伤 ; 小鼠
  • 英文关键词:glioma;;high-dose radiotherapy;;brain injury;;mice
  • 中文刊名:QLZL
  • 英文刊名:Chinese Journal of Cancer Prevention and Treatment
  • 机构:大连医科大学附属大连市中心医院神经内科;大连医科大学附属第二医院神经康复科;大连医科大学附属第二医院病理科;
  • 出版日期:2019-01-28
  • 出版单位:中华肿瘤防治杂志
  • 年:2019
  • 期:v.26
  • 基金:国家自然科学基金(81300985);; 辽宁省自然科学基金(2015020549);; 大连市卫生计生委项目(1711014)
  • 语种:中文;
  • 页:QLZL201902004
  • 页数:6
  • CN:02
  • ISSN:11-5456/R
  • 分类号:18-23
摘要
目的神经胶质瘤是最常见的中枢神经系统恶性肿瘤,对现有治疗方法反应不佳,预后差。本研究探讨单次高剂量放疗对神经胶质瘤的疗效和对神经组织的损伤情况。方法 12只健康重症联合免疫缺陷(severe combined immunodeficiency,SCID)小鼠按随机数表法分为9L胶质母细胞瘤模型组(n=6)和颅窗模型组(n=6),均接受单次高剂量放疗(60Gy)。利用MR监测肿瘤生长及放疗引起的脑组织结构改变,通过钙指示剂和双光子显微镜观察放疗前后小鼠清醒状态下的神经活动,采用免疫荧光染色及HE染色明确放疗后脑组织病理学改变。结果小鼠颅内9L胶质瘤于T2加权像(T2weighted image,T2WI)和增强T1加权像(T1weighted image,T1WI)上呈现高信号。放疗后1周,MR示胶质瘤体积显著缩小,2周后肿瘤不再显影。6周后,T2WI及增强T1WI均未见脑实质内异常信号,放疗侧和对侧脑组织T2WI信号强度分别为0.933±0.057和0.870±0.078,差异无统计学意义,t=1.333,P=0.240;放疗侧和对侧脑组织T1WI-Gd增强成像信号强度分别为1.113±0.108和1.217±0.072,差异无统计学意义,t=1.735,P=0.143。但放疗侧脑室(0.367±0.027)较对侧(0.937±0.043)缩小,差异有统计学意义,t=24.680,P<0.001。双光子显微镜下发现,放疗前及放疗后6周照射脑区的神经元均具有神经活动。HE染色未见脑组织形态学改变。免疫荧光染色显示,双侧皮层神经元形态正常,放疗侧和健侧神经元数目分别为199.3±11.860和197.7±9.374,差异无统计学意义,t=0.387,P=0.715;但放疗侧活化的星胶质细胞数(43.33±9.245)高于对侧(10.00±1.673),差异有统计学意义,t=8.537,P<0.001。结论单次高剂量放疗可根治小鼠神经胶质母细胞瘤,肿瘤根除后4周出现星形胶质细胞增生及脑室缩小等放射性损伤,在此前具有较长的干预时间窗以阻止神经损伤的进程。
        OBJECTIVE Glioma is the most common malignant tumor in the central nervous system with poor prognosis.The study aimed to observe the efficacy of single high-dose radiotherapy on glioma and radiation-induced neural injury.METHODS Twelve SCID mice were divided into 9 Lglioblastoma-bearing group and cranial window group(n=6/group),followed by single high-dose radiotherapy(60 Gy).MRI was performed to monitor tumor growth and the cerebral structure changes induced by radiation.Calcium indicators and two-photon microscopy were applied pre-and post-radiation to image neuronal activity in awake mice.The pathological changes of brain tissue after radiotherapy were investigated by HE and immunofluorescent staining.RESULTS 9 L glioblastoma displayed hyperintensities on T2-weighted images(T2 WI)and enhanced T1-weighted images(T1 WI).One week after radiotherapy,the tumor shrunk greatly and was invisible 2 weeks later on MRI.Six weeks post radiation,T2 WI and T1 WI enhancement did not show visible abnormalities in the brain parenchyma,and the difference of signal intensity in the cortex between two hemispheres was not statistically significant on T2 WI(0.933±0.057,0.870±0.078,t=1.333,P=0.240)and T1 WI enhancement(1.113±0.108,1.217±0.072,t=1.735,P=0.143).However,the ventricular size on irradiated side decreased significantly versus the contralateral side(0.367±0.027,0.937±0.043,t=24.680,P<0.001).Two-photon microscopy revealed individual neuronal activities in the targeted area both pre-and 6-week-post-radiation.No brain morphological changes were observed by HE staining.Immunofluorescent staining showed that there were no morphological changes of neurons and neuronal loss(199.3±11.860,197.7±9.374,t=0.387,P=0.715),but the numbers of active astrocytes were increase in irradiated hemisphere compared with the contralateral side(43.33±9.245,10.00±1.673,t=8.537,P<0.001).CONCLUSIONS Single highdose radiotherapy achieves eradication of mouse glioblastoma.Radiative damage such as astrocytosis and ventricle shrinkage occurred 4 weeks after the tumor was eradicated,which offers an interventional time-window to prevent and repair brain damage.
引文
[1] Chien LN,Gittleman H,Ostrom QT,et al.Comparative brain and central nervous system tumor incidence and survival between the United States and Taiwan based on population-based registry[J].Front Public Health,2016,4(151):1-9.
    [2] Zarnett OJ,Sahgal A,Gosio J,et al.Treatment of elderly patients with glioblastoma:a systematic evidence-based analysis[J].JAMA Neurol,2015,72(5):589-596.
    [3] Wu CC,Wang TJ,Jani A,et al.A Modern radiotherapy series of survival in hispanic patients with glioblastoma[J].World Neurosurg,2016,88:260-269.
    [4] Moinuddin FM,Hirano H,Shinsato Y,et al.ATP7Bexpression in human glioblastoma is related to temozolomide resistance[J].Oncol Lett,2017,14(6):7777-7782.
    [5] Ma Y,Shaik MA,Kozberg MG,et al.Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons[J].Proc Natl Acad Sci U S A,2016,113(52):8463-8471.
    [6] Chen TW,Wardill TJ,Sun Y,et al.Ultrasensitive fluorescent proteins for imaging neuronal activity[J].Nature,2013,499(7458):295-300.
    [7] Smith GB,Fitzpatrick D.Viral injection and cranial window implantation for in vivo two-photon imaging[J].Methods Mol Biol,2016,1474(8):171-185.
    [8] Holtmaat A,Bonhoeffer T,Chow DK,et al.Long-term,high-resolution imaging in the mouse neocortex through a chronic cranial window[J].Nat Protoc,2009,4(8):1128-1144.
    [9] Rashed ER,El-Daly MA,Abd-Elhalim SA,et al.Anti-apoptotic and antioxidant effects of low dose gamma irradiation against diabetes-induced brain injury in rats[J].Radiat Environ Biophys,2016,55(4):451-460.
    [10] Glinski B.Postoperative hypofractionated radiotherapy versus conventionally fractionated radiotherapy in malignant gliomas.A preliminary report on a randomized trial[J].J Neurooncol,1993,16(2):167-172.
    [11] Terasaki M,Eto T,Nakashima S,et al.A pilot study of hypofractionated radiation therapy with temozolomide for adults with glioblastoma multiforme[J].J Neurooncol,2011,102(2):247-253.
    [12] Reddy K,Damek D,Gaspar LE,et al.PhaseⅡtrial of hypofractionated IMRT with temozolomide for patients with newly diagnosed glioblastoma multiforme[J].Int J Radiat Oncol Biol Phys,2012,84(3):655-660.
    [13] Carlson JA,Reddy K,Gaspar LE,et al.Hypofractionated-intensity modulated radiotherapy(hypo-IMRT)and temozolomide(TMZ)with or without bevacizumab(BEV)for newly diagnosed glioblastoma multiforme(GBM):a comparison of two prospective phaseⅡtrials[J].J Neurooncol,2015,123(2):251-257.
    [14]孙涛,董莹,张矛.老年多形性胶质母细胞瘤术后替莫唑胺同步临床观察[J].中华肿瘤防治杂志,2014,21(1):29-33.
    [15] Morris GM,Coderre JA,Bywaters A,et al.Bevacizumab alleviates radiation-induced brain necrosis:A report of four cases[J].J Cancer Res Ther,2015,11(2):485-487.
    [16] Lv XF,Zheng XL,Zhang WD,et al.Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma:a magnetic resonance imaging voxel-based morphometry study[J].Neuroradiology,2014,56(5):423-430.
    [17] Bian W,Banerjee S,Kelly DA,et al.Simultaneous imaging of radiation-induced cerebral microbleeds,arteries and veins,using a multiple gradient sequence at 7 Tesla[J].J Magn Reson Imaging,2015,42(2):269-279.
    [18] Casciati A,Dobos K,Antonelli F,et al.Age-related effects of Xray irradiation on mouse hippocampus[J].Oncotarget,2016,7(19):28040-28058.
    [19] Toler J,Deputy S,Zakris E,et al.Cognitive dysfunction after cranial radiation for a brain tumor[J].J Pediatric Infect Dis Soc,2016,5(1):96-99.
    [20] Santisakultarm TP,Kersbergen CJ,Bandy DK,et al.Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets[J].J Neurosci Methods,2016,271(9):55-64.
    [21] Barthélémy A,Mouchard A,Bouji M,et al.Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures[J].Environ Sci Pollut Res Int,2016,3(24):25343-25355.
    [22] Yang J,Xu Z,Gao J,et al.Evaluation of early acute radiation-induced brain injury:Hybrid multifunctional MRI-based study[J].Magn Reson Imaging,2018,54(12):101-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700