基于AMESim液压系统管路动态特性的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Research on Pipeline Dynamic Characteristics of Hydraulic System based on AMESim
  • 作者:桑勇 ; 邵利来 ; 段富海
  • 英文作者:SANG Yong;SHAO Li-lai;DUAN Fu-hai;School of Mechanical Engineering, Dalian University of Technology;
  • 关键词:交流液压 ; 频域分析 ; AMESim ; 动态特性
  • 英文关键词:pulsating flow hydraulic;;frequency domain analysis;;AMESim;;dynamic characteristic
  • 中文刊名:YYQD
  • 英文刊名:Hydraulics Pneumatics & Seals
  • 机构:大连理工大学机械工程学院;
  • 出版日期:2018-02-15
  • 出版单位:液压气动与密封
  • 年:2018
  • 期:v.38;No.236
  • 基金:国家自然科学基金项目(51275068);; 中央高校基本科研项目(DUT15LK21)
  • 语种:中文;
  • 页:YYQD201802005
  • 页数:6
  • CN:02
  • ISSN:11-4839/TH
  • 分类号:21-26
摘要
该文对液压系统管路的动态特性开展研究,理论推导了管路谐振频率、管路传递矩阵等主要参数的计算表达式。引入基于AMESim软件的时域、频域分析方法,通过对经典管路水锤现象进行时域、频域对比分析,证明AMESim软件能有效的模拟管路的实际情况,并能真实的反映管路在时域和频域内的动态特性。在此基础上,将该方法应用于液压伺服系统液压源与伺服阀之间长管路的动态特性分析当中,探索管长、管径及管厚与管路谐振频率及相位差之间的关系。分析结果表明:随着液压管道长度的增加,管路谐振频率显著降低,相位差增大,系统响应时间变长;随着管道内径的增加,管道压力幅值比增加,而谐振频率及相位差变化不大;管道厚度对系统动态特性影响较小。该研究可为液压系统管路设计提供参考。
        This paper studied the dynamic characteristics of hydraulic system pipeline, the arithmetical expression of pipe line resonance frequency, the transfer matrix were deduced.Through analyzing the phenomenon of water hammer in time domain, frequency domain, introduced the analytical method in time domain and frequency domain based on AMESim software,proofed that AMESim software could effectively simulate the actual situation of the pipeline, and reflect the real line dynamic characteristics in time domain and frequency domain.On this basis, analyzed the dynamic characteristics of the long pipe between hydraulic source and servo valve of hydraulic servo system by using this method, explored the relationship between the length, diameter, thickness of pipeline and the resonance frequency and phase difference of it.Analysis results show that:With the increase of hydraulic pipe length, pipe resonant frequency decreased significantly,but the phase difference and system response time increased;With the increase of pipe diameter, pipe pressure amplitude ratio increased significantly,the resonance frequency and phase difference changed a little;Pipe thickness had smaller influence on the system's dynamic characteristics.The study can provide reference for hydraulic system pipeline design.
引文
[1]丁问司,巫辉燕,陈丽娜,等.单相交流液压系统设计及特性分析[J].中南大学学报自然科学版,2010,41(4):1348-1353.
    [2]姚静,孔祥东.锻造液压机管道动态特性仿真研究[J].机床与液压,2011,39(9):105-107.
    [3]侯友山,石博强,肖成勇,等.铰接车辆转向系统液压管路动态特性[J].农业工程学报,2009,25(10):112-116.
    [4]董春芳,朱玉杰,冯国红.基于AMESim的长管道液压系统动态仿真[J].煤矿机械,2010,31(1):73-75.
    [5]齐晓燕,陆清.基于ANSYS的飞机液压管路系统流固耦合分析[J].液压与气动,2015,(10):71-74.
    [6]于彦普.水锤问题的理论分析,计算及预防[J].天津建设科技,2000,(3):27-28.
    [7]赵孝保.工程流体力学.第3版[M].南京:东南大学出版社,2012.
    [8]王占林.飞机高压液压能源系统[M].北京:北京航空航天大学出版社,2004.
    [9]焦宗夏.飞机液压能源管路系统的振动特性分析[J].北京航空航天大学学报,1997,(3):316-321.
    [10]Wongputorn P,Hullender D A,Woods R L.Rational Polynomial Transfer Function Approximations for Fluid Transients in Lines[R].Honolulu:4thASME/JSME Joint Fluids Summer Engineering Conference,2003.
    [11]Watton J,Tadmori M J.A Comparison of Techniques for the Analysis of Transmission Line Dynamics in Electrohydraulic Control Systems[J].Applied Mathematical Modelling,1988,12(5):457-466.
    [12]曾祥荣.液压噪声控制[M].哈尔滨:哈尔滨工业大学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700