不同分枝数对桑树幼苗生长发育的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of branch number on the growth and development of Morus alba saplings
  • 作者:慧慧 ; 胥晓 ; 刘刚 ; 贺俊东 ; 杨延霞 ; 黄科朝
  • 英文作者:HUAN Huihui;XU Xiao;LIU Gang;HE Jundong;YANG Yanxia;HUANG Kechao;College of Life Science,China West Normal University;Key Laboratory of Southwest China Wildlife Resources Conservation ( China West Normal University),Ministry of Education;Sericultural Research Institute,Sichuan Academy of Agricultural Sciences;
  • 关键词:桑树 ; 分枝数 ; 净光合速率 ; 形态生长 ; 生物量积累
  • 英文关键词:Morus alba;;branch number;;net photosynthesis rate;;morphological growth;;biomass accumulation.
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西华师范大学生命科学学院;西华师范大学西南野生动植物资源保护教育部重点实验室;四川省农业科学院蚕业研究所;
  • 出版日期:2014-01-06 09:58
  • 出版单位:生态学报
  • 年:2014
  • 期:v.34
  • 基金:四川省青年科技基金资助项目(2012JQ0043)
  • 语种:中文;
  • 页:STXB201404006
  • 页数:9
  • CN:04
  • ISSN:11-2031/Q
  • 分类号:50-58
摘要
以我国常见经济林木桑树(Morus alba)为试验材料,从气体交换、形态变化和地上生物量方面研究5种分枝模式(1、2、3、4和5枝)对幼苗生长发育的影响。结果显示:(1)分枝数为1的植株的净光合速率(P n)最高,达到8.6μmol·m-2·s-1。随着分枝数增加,P n显著下降,直至分枝数达到3枝及其以上时,净光合速率保持相对稳定,为4.3μmol·m-2·s-1。而气孔导度(g s)、胞间CO2浓度(C i)和蒸腾速率(E)则不受分枝数的影响。(2)随着分枝数增加,总叶片数量、总叶面积和总枝长都显著增加,最终分别达到114.3,10481.1 cm2和457.1 cm,而平均单枝叶片数、平均单枝基径、平均单叶面积和比叶面积则显著减少。(3)随着分枝数的增加,植株的总叶生物量和总枝生物量无显著变化,但平均每枝叶干重、平均每枝枝干重和平均每枝总生物量随分枝数的增加而逐渐减少。研究结果表明了分枝数增加可能导致叶片间对光资源的竞争强度增大,引起净光合速率下降,叶片面积变小,单枝长度和生物量减小。另一方面,植株则通过生长出更多的叶片数量,以及更大的总叶片面积来尽可能地消除竞争带来的不利影响,提高对光环境资源的利用。
        Morus alba L. is a valuable multipurpose species and is widely distributed in central,northern and southwestern China. This species is one of the most economically important cultivated tree species in China and also provides basic raw materials supporting vigorous development of China's sericulture and textile industries. Most previous studies related to M. alba have primarily focused on cultivation techniques,pest control,quality improvement and development of resources. Previous studies have not yet provided data related to the photosynthetic capacity of this species or leaf growth patterns,and in particular,no studies have addressed the change of biomass in plants with a different number of branches. In this study, 3-year- old mulberry seedlings were transplanted from the garden of the Sichuan Academy of Agricultural Sciences to investigate the effects of branch number on plant growth. Five branch number models were used; that is,one,two,three, four,or five branches were left on the stem of saplings for experimental purposes,and the saplings were allowed to grow for 6 months. We investigated differences in various gas exchange factors, including net photosynthetic rate, stomatal conductance,intercellular CO 2 concentration and transpiration rate for plants using the five branch models during the growing season. From the aspect of plant morphological growth,we measured the growth rates based on leaf number,branch length and basal diameter for the five branch models,once every ten days. After the growing season,we measured the differences of leaf biomass,above ground stem biomass and total biomass among plants used for the five branch model experiments. We also analyzed biomass allocation in M. alba with the different branch models. The results show that the single-branch saplings had the highest net photosynthetic rate( P n)( 8. 6 μmol·m–2·s-1). As the number of branches on a plant increased,the P n was observed to decrease significantly and remained relative stable( 4. 3 μmol·m-2·s-1) when the number of branches was three or more. In contrast,stomatal conductance( g s),intercellular CO 2 concentration,( C i) and transpiration rate( E) showed no significant changes in all M. alba saplings. Also,total leaf number( TLN),total leaf area( TLA),and total stem lengths( TSL) of saplings increased significantly as the number of branches increased to a maximum of 114. 3 leaves,10481. 1 cm2,and 457. 1 cm,respectively. However,the number of leaves per branch( LN/ B),basal diameter per branch( BD / B),mean surface area per leaf( LA / L) and specific leaf area( SLA) obviously decreased in multiple-branch saplings and to 22. 9 leaves,7. 57 mm,87. 3 cm2and 48. 91 cm2/ g,respectively. Moreover, branch number had no effect on the total dry biomass accumulation and allocation,but mean leaf dry mass per branch( LM / B),mean stem dry mass per branch( SM / B),and mean dry mass per branch( DM / B) gradually decreased with the increase in branch number,with values of 8. 61 g,9. 51 g and 18. 12 g,respectively. The results suggest that an increase in branch number may result in more intense competition for light resources between leaves,resulting in a lower net photosynthetic rate,smaller leaf area,and shorter stem length per branch as leaves compete for light and resources used to produce biomass. To eliminate the negative effects of such competition as much as possible,saplings can grow additional leaves as well as enlarge their total leaf area to make better use of limited light resources.
引文
[1]Nelson N D,Burk T,Isebrands J G.Crown architecture of shortrotation,intensively cultured Populus.:Ⅰ.Effects of clone and spacing on first-order branch characteristics.Canada Journal of Forest Research,1981,11(1):73-81.
    [2]Ceulemans B,Stettler R F,Hinckley T M,Isebrands J G,Heilman P E.Crown architecture of Populus clones as determined by branch orientation and branch characteristics.Tree Physiology,1990,7(1/4):157-167.
    [3]Suzuki A.Patterns of vegetative growth and reproduction in relation to branch orders:the plant as a spatially structured population.Trees,2000,14(6):329-333.
    [4]King D A.Relationship between crown architecture and branch orientation in rain forest trees.Annals of Botany,1998,82(1):1-7.
    [5]PortéA,Trichet P,Bert D,Loustau D.Allometric relationships for branch and tree woody biomass of Maritime pine(Pinus pinaster At.).Forest Ecology and Management,2002,158(1/3):71-83.
    [6]Kellomki S.A model for the relationship between branch number and biomass in Pinus sylvestris crowns and the effect of crown shape and stand density on branch and stem biomass.Scandinavian Journal of Forest Research,1986,1(1/4):455-472.
    [7]Kim J H,Kim T J,Lee C H,Paek K Y,Hahn E J,Kim H H.Effect of number of branches on quality and yield of secondary cut flower production of Dendranthema grandiflorum‘Herman de Boon’.Korean Journal of Horticultural Science and Technology,2003,21(3):212-215.
    [8]Nakamura Y,Morita A.Effects of pruning of tea cuttings in paper pots on the number of branches and plant growth before and after transplanting.Japanese Journal of Crop Science,2006,75(3):289-295.
    [9]Isebrands J G,Nelson N D.Crown architecture of short-rotation,intensively cultured Populus II.Branch morphology and distribution of leaves within the crown of Populus‘Tristis’as related to biomass production.Canadian Journal of Forest Research,1982,12(4):853-864.
    [10]Kauppi A,Kiviniitty M,Ferm A.Growth habits and crown architecture of Betulapubescens Ehrh.of seed and sprout origin.Canadian Journal of Forest Research,1988,18(12):1603-1613.
    [11]Mizumachi E,Mori A,Osawa N,Akiyama R,Tokuchi N.Shoot development and extension of Quercus serrata saplings in response to insect damage and nutrient conditions.Annals of Botany,2006,98(1):219-226.
    [12]Lin T B,Li Y G,LüZ Q,Zhu Y.Advances in the research and development on the synthesize utilization of Mulberry resources.Bulletin of Sericulture,2008,39(3):1-4.
    [13]Ye W B.Status quo of Mulberry cultivation technique and its development strategy in China.Acta Sericologica Sinica,1996,22(4):235-240.
    [14]Tang C M,Luo G Q,Chen X T,Xiao G S,Wu F Q,Yang Q,Wu J A,Ren D Z.Breeding and cultivation technique of seedless Mulberry variety-Da10 with fruit-leaf dual purpose.Journal of Soochow University:Engineering Science Edition,2005,25(2):35-38.
    [15]Luo P,Zhou S L.Effect of land use on ecological benefit of farm belt in suburbs:A case study was conducted of Gaoping district,Nanchong City,Sichuan Province.Journal of Ecology and Rural Environment,2007,23(4):6-10.
    [16]Xu X,Yang F,Xiao X W,Zhang S,Korpelainen H,Li C Y.Sex-specific responses of Populus cathayana to drought and elevated temperatures.Plant,Cell&Environment,2008,31(6):850-860.
    [17]Ke Y Z,Zhou J X,Zhang X D,Sun Q X,Zuo L.Effects of salt stress on photosynthetic characteristics of mulberry seedlings.Scientia Silvae Sinicae,2009,45(8):61-66.
    [18]Xu D Q,Zhang Y Z,Zhang R X.Photoinhibition of photosynthesis in plants.Plant Physiology Communications,1992,28(4):237-243.
    [19]Scott S L,Aarssen L W.Leaf size versus leaf numbertrade-offs in dioecious angiosperms.Journal of Plant Ecology,2013,6(1):29-35.
    [20]Burk T E,Nelson N D,Isebrands J G.Crown architecture of short-rotation,intensively cultured Populus.III.A model of firstorder branch architecture.Canadian Journal of Forest Research,1983,13(6):1107-1116.
    [21]Lebon E,Pellegrino A,Louarn G,Lecoeur J.Branch development controls leaf area dynamics in grapevine(Vitis vinifera)growing in drying soil.Annals of Botany,2006,98(1):175-185.
    [22]Ward J K,Dawson T E,Ehleringer J R.Responses of Acer negundo genders to interannual differences in water availability determined from carbon isotope ratios of tree ring cellulose.Tree Physiology,2002,22(5):339-346.
    [23]Zuo J,Wang G,Tang Y S,Qin Y L,Wang L,Zhang H T.The response of morphological plasticity and biomass allocation of Euptelea pleiospermum seedlings to different light regimes.Chinese Agricultural Science Bulletin,2010,26(21):85-89.
    [24]Zhang Y J,Feng Y L.The relationships between photosynthetic capacity and lamina mass per unit area,nitrogen content and partitioning in seedlings of two Ficus species grown under different irradiance.Journal of Plant Physiology and Molecular Biology,2004,30(3):269-276.
    [25]Li Y L,Cui J Y,Su Y Z.Specific leaf area and leaf dry matter content of some plants in different dune habitats.Acta Ecologica Sinica,2005,25(2):304-311.
    [26]Wang Y H,Wang K,Xing F.Advances of studies on the morphological plasticity,integration and foraging behavior of stoloniferous herbaceous plants.Chinese Journal of Ecology,2005,24(1):70-74.
    [27]de Kroons H,Hutchings M J.Morphological plasticity in clonal plants:the foraging concept reconsidered.Journal of Ecology,1995,83(1):143-152.
    [28]Bartelink H H.A model of dry matter partitioning in trees.Tree Physiology,1998,18(2):91-101.
    [29]Sheng C F.An napproach to the nature of compensation of crops for insect feedings.Acta Ecologica Sinica,1989,9(3):207-212.
    [30]Yuan B Z,Wang J,Zhao S L.An approach to the mechanism of plant compensation.Chinese Journal of Ecology,1998,17(5):45-49.
    [31]Belsky A J,Carson W P,Jensen C L,Fox G A.Overcompensation by plants:Herbivore optimization or red herring?Evolutionary Ecology,1993,7(1):109-121.
    [32]Quintero C,Bowers M D.Effects of insect herbivory on induced chemical defences and compensation during early plant development in Penstemon virgatus.Annals of Botany,2013,doi:10.1093/aob/mct011.
    [33]Focardia S,Tinellib A.Herbivory in a Mediterranean forest:browsing impact and plant compensation.Acta Oecologica,2005,28(3):239-247.
    [34]Trumble J T,Kolodny-Hirsch D M,Ting I P.Plant compensation for arthropod herbivory.Annual Review of Entomology,1993,38:93-119.
    [35]Lu H,Han J G,Zhang Z H.Impacts of damage caused by Oedaleus asiaticus on the compensatory growth of plants in steppe.Pratacultural Science,2008,25(5):112-116.
    [36]Boege K.Influence of plant ontogeny on compensation to leaf damage.American Journal of Botany,2005,92(10):1632-1640.
    [37]Wang S J,Liu Y R,Zu C Q,Shen Y B.A study on the overcompensation effect of poplar from leaf loss.Forest Research,1993,6(3):294-298.
    [12]林天宝,李有贵,吕志强,朱燕.桑树资源综合利用研究进展.蚕桑通报,2008,39(3):1-4.
    [13]叶伟彬.我国桑树栽培技术的现状及发展对策.蚕业科学,1996,22(4):235-240.
    [14]唐翠明,罗国庆,陈训庭,肖更生,吴福泉,杨琼,吴剑安,任德珠.果叶两用无籽桑树品种“大10”的育成及其栽培技术.苏州大学学报:工科版,2005,25(2):35-38.
    [15]罗培,周申立.土地利用变化对城郊农业区生态效益的影响——以四川省南充市高坪区为例.生态与农村环境学报,2007,23(4):6-10.
    [17]柯裕州,周金星,张旭东,孙启祥,左力.盐胁迫对桑树幼苗光合生理生态特性的影响.林业科学,2009,45(8):61-66.
    [18]许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯,1992,28(4):237-243.
    [23]左娟,王戈,唐源盛,秦银林,王莲,张海坦.领春木幼苗形态及生物量分配对光环境的响应.中国农学通报,2010,26(21):85-89.
    [25]李玉霖,崔建垣,苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较.生态学报,2005,25(2):304-311.
    [26]王艳红,王珂,邢福.匍匐茎草本植物形态可塑性、整合作用与觅食行为研究进展.生态学杂志,2005,24(1):70-74.
    [29]盛承发.作物对虫害补偿作用本质的探讨.生态学报,1989,9(3):207-212.
    [30]原保忠,王静,赵松岭.植物补偿作用机制探讨.生态学杂志,1998,17(5):45-49.
    [35]卢辉,韩建国,张泽华.典型草原亚洲小车蝗危害对植物补偿生长的作用.草业科学,2008,25(5):112-116.
    [37]王世绩,刘雅荣,朱春全,沈应柏.杨树失叶对生长超越补偿作用的研究.林业科学研究,1993,6(3):294-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700