椎板切除对腰椎融合后邻近节段生物力学的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biomechanical Effect of Laminectomy on Adjacent Segment after Lumbar Interbody Fusion
  • 作者:黄云鹏 ; 门玉涛 ; 刘海英 ; 都承斐
  • 英文作者:HUANG Yunpeng;MEN Yutao;LIU Haiying;DU Chengfei;Department of Orthopedics, First Affiliated Hospital of Fujian Medical University;Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology;
  • 关键词:椎板切除 ; 腰椎椎间融合 ; 邻近节段 ; 有限元模型
  • 英文关键词:laminectomy;;lumbar interbody fusion;;adjacent segment;;finite element model
  • 中文刊名:YISX
  • 英文刊名:Journal of Medical Biomechanics
  • 机构:福建医科大学附属第一医院骨科;天津理工大学天津市先进机电系统设计与智能控制重点实验室机电工程国家级实验教学示范中心;
  • 出版日期:2018-12-15
  • 出版单位:医用生物力学
  • 年:2018
  • 期:v.33
  • 基金:国家自然科学基金项目(11602172,11432016);; 福建省卫生系统中青年人才培养项目(2013-ZQN-ZD-19);; 福建省临床重点专科建设项目(闽卫科教[2012]149号)
  • 语种:中文;
  • 页:YISX201806016
  • 页数:8
  • CN:06
  • ISSN:31-1624/R
  • 分类号:92-99
摘要
目的从生物力学角度研究后路不同程度椎板切除对腰椎融合手术后邻近节段的影响。方法在完整腰椎有限元模型基础上,建立3种椎板切除程度不同的手术模型:双侧小关节切除(Bi-TLIF)、半椎板切除(PLIF)、全椎板切除(LAM-PLIF)。对不同模型在生理载荷下的生物力学响应进行研究,对比手术模型椎间活动度、椎间盘内压以及小关节接触力相对于正常模型的变化。生理载荷采用400 N随动载荷+7.5 N·m力矩的方式施加在L1节段上终板上,加载过程中对骶髂关节面上的6个自由度保持约束。结果前屈状态下,手术组Bi-TLIF、PLIF、LAM-PLIF相邻节段L3~4生物力学变化明显,其椎间活动度比正常组依次增大1.0%、9.3%和24.5%,而椎间盘内压依次增大1.4%、4.3%、10.0%,在其他姿态下影响不明显。对于小关节接触力,Bi-TLIF、PLIF在L3~4节段有明显增加,而在L5~S1节段则不明显。结论椎板切除会增加腰椎融合手术后的邻近节段椎间活动度、椎间盘内压以及小关节接触力,这些生物力学变化可能会增大邻近节段退变的风险。椎板切除范围越大,对邻近节段产生的影响越大。因此,更多地保留后部结构复合体,对于减少腰椎融合后邻椎病的发生具有积极的意义。
        Objective To study the biomechanical influence of posterior laminectomy with varying extent on adjacent segment after lumbar interbody fusion. Methods Three finite element models of lumbar posterior fusion were developed based on the validated intact lumbar model. These models were: posterior fusion with bi-lateral incision of facet joint(Bi-TLIF),inferior partly incision of laminar(PLIF),total laminectomy(LAM-PLIF). The range of motion(ROM), intradiscal pressure(IDP), facet joint contact force(FJF) of adjacent segment of fusion models under various loading were compared with the intact model. The follower load of 400 N under 7.5 N·m torque was exerted on superior endplate of L1 segment. The 6-DOF(degree of freedom) of sacroiliac joint surface was constrained during loading. Results During flexion, obvious biomechanical changes of superior adjacent segment(L3-4) were found in Bi-TLIF, PLIF, LAM-PLIF surgery groups. Compared with the intact model, the ROM in Bi-TLIF, PLIF, LAM-PLIF group increased by 1.0%, 9.3%, 24.5%, respectively, while IDP in the above fusion groups increased by 1.4%, 4.3%, 10.0%,respectively. These changes were not obvious in other postures. For FJF, the Bi-TLIF and PLIF group showed obvious increasing effect on L3-4 segment, while almost had no effect on L5-S1 segment. Conclusions Laminectomy increased ROM, IDP and FJF of adjacent segment(especially superior adjacent segment) after posterior lumbar fusion, which might increase the risk of adjacent segment degeneration. This biomechanical effect was more obvious with the increase in incision range of laminar. Therefore, preserving more posterior complex during decompression has a positive effect on preventing adjacent segment degeneration(ASD) following lumbar fusion surgeries.
引文
[1] BARBAGALLO GMV, VINCENZO A, RAICH AL, et al. Lumbar lateral interbody fusion (LLIF): Comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF outcome [J]. Evid Based Spine Care J, 2014, 5(1): 28-37.
    [2] HARRIS BM, HILIBRAND AS, SAVAS PE, et al. Transforaminal lumbar interbody fusion: The effect of various instrumentation techniques on the flexibility of the lumbar spine [J]. Spine, 2004, 29(4): 65-70.
    [3] CRAIG HUMPHREYS S, HODGES SD, PATWARDHAN AG, et al. Comparison of posterior and transforaminal approaches to lumbar interbody fusion [J]. Spine, 2001, 26 (5): 567-571.
    [4] YAN DL, PEI FX, LI J, et al. Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis [J]. Euro Spine J, 2008, 17(10): 1311-1316.
    [5] ZHANG Q, YUAN Z, ZHOU M, et al. A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: A literature review and meta-analysis [J]. BMC Musculoskelet Disord, 2014, doi: 10.1186/1471-2474-15-367.
    [6] SIM HB, MUROVIC JA, CHO BY, et al. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: Segmental stability and the effects on adjacent motion segments [J]. J Neurosurg Spine, 2010, 12(6): 700-708.
    [7] XU H, JU W, XU N, et al. Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion by finite element analysis [J]. Neurosurgery, 2013, 72 (1 Suppl): 21-26.
    [8] SOUKANE DM, SHIRAZIADL A, URBAN JPG. Investigation of solute concentrations in a 3D model of intervertebral disc [J]. Eur Spine J, 2009,18 (2): 254-262.
    [9] PARK P, GARTON HJ, GALA VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: Review of the literature [J]. Spine, 2004, 29 (17): 1938-1944.
    [10] HARROP JS, YOUSSEF JA, MALTENFORT M, et al. Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty[J]. Spine, 2008, 33(15): 1701-1707.
    [11] WAI EK, SANTOS ER, MORCOM RA, et al. Magnetic resonance imaging 20 years after anterior lumbar interbody fusion [J]. Spine, 2006,31(17): 1952-1956.
    [12] IMAGAMA S, KAWAKAMI N, KANEMURA T, et al. Radiographic adjacent segment degeneration at five years after L4/5 posterior lumbar interbody fusion with pedicle screw instrumentation: Evaluation by computed tomography and annual screening with magnetic resonance imaging [J]. Clin Spine Surg, 2016, 29(9): 442-451.
    [13] TANG S. Comparison of posterior versus transforaminal lumbar interbody fusion using finite element analysis: Influence on adjacent segmental degeneration [J]. Saudi Med J, 2015, 36(8): 993-996.
    [14] CHEN CS, FENG CK, CHENG CK, et al. Biomechanical analysis of the disc adjacent to posterolateral fusion with laminectomy in lumbar spine [J]. J Spinal Disord Tech, 2005, 18: 58-65.
    [15] 刘延东, 毛景松, 杨丽萍. 腰椎爆裂骨折椎体松质骨内力学分布特点的有限元研究[J]. 医用生物力学, 2016, 31(1): 45-49.LIU YD, MAO JS, YANG LP. Character of stress distributions on vertebral cancellous bone in lumbar burst fracture: A finite element study [J]. J Med Biomech, 2016, 31(1): 45-49.
    [16] 都承斐, 李俊伟, 刘海英, 等. 随动载荷对腰椎小关节接触力的影响[J]. 医用生物力学, 2017, 32(4): 363-368.DU CF, LI JW, LIU HY. Effect of follower load on facet joint contact force of lumbar spine [J]. J Med Biomech, 2017, 32(4): 363-368.
    [17] 余伟波, 王健, 梁德, 等. TLIF术中最优化单侧螺钉植入和融合器放置的有限元分析[J]. 医用生物力学, 2017, 32(5): 415-421.YU WB, WANG J, LIANG D, et al. Finite element analysis on the optimal unilateral pedicle screw-implanted angle and cage position for TLIF surgery [J]. J Med Biomech, 2017, 32(5): 415-421.
    [18] DU C, MO Z, TIAN S, et al. Biomechanical investigation of thoracolumbar spine in different postures during ejection using a combined finite element and multi-body approach [J]. Int J Nume Method Biomed Eng, 2014, 30(11): 1121-1131.
    [19] DU CF, YANG N, GUO JC, et al. Biomechanical response of lumbar facet joints under follower preload: A finite element study [J]. BMC Musculoskelet Disord, 2016, doi: 10.1186/s12891-016-0980-4.
    [20] DU CF, GUO JC, HUANG YP, et al. A new method for determining the effect of follower load on the range of motions in the lumbar spine [C]//Proceedings of World Congress on Medical Physics and Biomedical Engineering. Toronto: [s.n.], 2015: 326-329.
    [21] VADAPALLI S, SAIRYO K, GOEL VK, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study [J]. Spine, 2006, 31(26): 992-998.
    [22] ASANO S, KANEDA K, UMEHARA S, et al. The mechanical properties of the human L4-5 functional spinal unit during cyclic loading. The structural effects of the posterior elements [J]. Spine, 1992, 17 (11): 1343-1352.
    [23] MIN JH, JANG JS, JUNG BJ, et al. The clinical characteristics and risk factors for the adjacent segment degeneration in instrumented lumbar fusion [J]. J Spinal Disord Tech, 2008, 21(5): 305-309.
    [24] 管俊杰, 石志才 后路腰椎椎间融合术对邻近节段退变的影响[J]. 脊柱外科杂志, 2011, 9(2): 83-87.
    [25] KETTLER A, SCHMOELZ W, KAST E, et al. In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages [J]. Spine, 2005, 30 (22): E665-E670.
    [26] AMES CP, JR AF, CHI J, et al. Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels [J]. Spine, 2005, 30 (19): 562-566.
    [27] XU H, JU W, XU N, et al. Biomechanical comparison of transforaminal lumbar interbody fusion with 1 or 2 cages by finite-element analysis[J]. Neurosurgery, 2013, 73(2 Suppl): 198-205.
    [28] XIAO Z, WANG L, GONG H, et al. Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis [J]. Biomed Eng Online, 2012, 11(31): 1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700