一种射流式冷却挡焰板的气动设计与数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aerodynamic design and numerical analysis of jet cooling blast deflector
  • 作者:颜世伟 ; 晋文超 ; 谭大力 ; 田云
  • 英文作者:Yan Shiwei;Jin Wenchao;Tan Dali;Tian Yun;Naval Research Academy;National Lab for Aeronautics and Astronautics,Beijing University of Aeronautics and Astronautics;
  • 关键词:航空母舰 ; 射流冷却 ; 喷气偏流板 ; 数值分析
  • 英文关键词:aircraft carrier;;jet cooling;;jet blast deflector;;numerical analysis
  • 中文刊名:JCZG
  • 英文刊名:Chinese Journal of Ship Research
  • 机构:海军研究院;北京航空航天大学航空科学与技术国家实验室;
  • 出版日期:2018-09-18 08:53
  • 出版单位:中国舰船研究
  • 年:2019
  • 期:v.14;No.79
  • 语种:中文;
  • 页:JCZG201902015
  • 页数:8
  • CN:02
  • ISSN:42-1755/TJ
  • 分类号:102-109
摘要
[目的]目前,美、俄两国航空母舰的挡焰板均采用海水冷却系统,虽然水冷效果较好,但存在管路复杂、维修和维护不便等问题。因此,[方法]借鉴涡轮叶片气膜冷却的方式,利用气体射流可以带走和隔离发动机高温尾喷流的特点,提出不依赖冷却水的射流冷却式挡焰板方案。对挡焰板上形成冷却气膜的射流槽位置和开孔数进行研究,运用CFD方法对采用不同射流孔方案的挡焰板温度等指标进行计算,并对其冷却效果进行对比分析,以验证该方案的可行性。[结果]结果表明,射流冷却方式可将挡焰板上95%表面核心区的平均温度降至可接受的范围。[结论]该隔热冷却方式效果显著,可有效实现对挡焰板的热防护。所提设计方案和数值分析方法对新型挡焰板方案及冷却方式设计具有一定的借鉴作用。
        [Objectives]At present,seawater cooling jet blast deflectors are used on American and Russian aircraft carriers to protect crew and equipment from aircraft engine blasts. Although seawater cooling is effective,seawater cooling jet blast deflectors require such complex facilities as pumps and pipelines,making their maintenance inconvenient.[Methods]With reference to the principle of film cooling on turbine vanes,this paper propose an alternative design of jet cooling for the blast deflector,using jet flows to remove and isolate high temperature flows from engine blasts. The location of slot and quantity of hole designed for film cooling on the deflector are investigated. The calculation of temperature and pressure on the deflector with different options of jet hole are made by CFD method,the cooling effect by this approach is then analyzed and validated.[Results]The calculation results show that the jet cooling effects are equivalent to those of seawater cooling jet blast deflectors,and can reduce the average temperature of the 95% core area to acceptable levels.[Conclusions]The jet flow cooling method is generally effective in achieving heat isolation. This numerical analysis and design method can be helpful in the research and design of passive jet blast deflectors.
引文
[1]何庆林,卢晶,杨大鹏.舰载飞机发动机尾流场数值模拟[J].中国舰船研究,2013,8(5):13-18,51.He Q L,Lu J,Yang D P.Numerical simulation of the flowfield of carrier-based aircraft exhaust jet[J].Chinese Journal of Ship Research,2013,8(5):13-18,51(in Chinese).
    [2]王超.舰载飞机发动机射流对甲板周围环境的影响[D].哈尔滨:哈尔滨工程大学,2008.Wang C.The influence of aircraft engine's jet flow around ship deck[D].Harbin:Harbin Engineering University,2008(in Chinese).
    [3]黄胜,王超,胡建.舰载飞机发动机喷流速度场研究[J].哈尔滨工程大学学报,2009,30(4):353-356.Haung S,Wang C,Hu J.Research on velocity field of carrier-based aircraft engine's jet flow[J].Journal of Harbin Engineering University,2009,30(4):353-356(in Chinese).
    [4]徐凯.航母舰载机与偏流板的适配性研究[D].哈尔滨:哈尔滨工程大学,2011.Xu K.Research of adaption between aircraft and jet blast deflector[D].Harbin:Harbin Engineering University,2011(in Chinese).
    [5]吴始栋.航母偏流板的开发与研究[J].中外船舶科技,2008(4):9-11.
    [6]Wadley H N G,Queheillalt D T,Haj-Hariri H,et al.Method and apparatus for jet blast deflection:US,20030164425A1[P].2007-06-12.
    [7]Tangen S.Investigating separated shear layers for passive jet blast deflector cooling[C]//44th AIAA Aerospace Sciences Meeting and Exhibit.Reno,Nevada:AIAA,2006.
    [8]Fischer E C,Sowell D A,Wehrle J,et al.Cooled jet blast deflectors for aircraft carrier flight decks:US,6575113B1[P].2003-06-10.
    [9]Campion G.Blast deflector:US,6802477B2[P].2004-10-12.
    [10]李昶,邱旭,任明其.新型折流板装置发展综述及其拓扑优化研究[J].船舶工程,2015,37(1):15-19.Li C,Qiu X,Ren M Q.Development of new blast deflector and research of its topology optimization[J].Ship Engineering,2015,37(1):15-19(in Chinese).
    [11]王军旗,李素循,倪招勇,等.数值模拟侧向超声速单喷流干扰流场特性[J].宇航学报,2007,28(3):598-602.Wang J Q,Li S X,Ni Z Y,et al.Numerical simulation of characteristics of supersonic jet interaction flowfields[J].Journal of Astronautics,2007,28(3):598-602(in Chinese).
    [12]赵飞,张延玲,朱荣,等.超音速射流流场中湍流模型[J].北京科技大学学报,2014,36(3):366-372.Zhao F,Zhang Y L,Zhu R,et al.Turbulence model in supersonic jet flowfield[J].Journal of University of Science and Technology Beijing,2014,36(3):366-372(in Chinese).
    [13]赵留平.舰载机发动机喷管高温高压流动特性仿真分析[J].舰船科学技术,2016,38(1):145-149.Zhao L P.Numerical simulation for high temperature and high pressure flowfield of aircraft engine jet impingement[J].Ship Science and Technology,2016,38(1):145-149(in Chinese).
    [14]王松涛,冯国泰,王仲奇,等.尾喷管内部及其射流流场的数值模拟[J].推进技术,2000,21(3):53-55.Wang S T,Feng G T,Wang Z Q,et al.Numerical simulation of performance and jet flowfield of the nozzle[J].Journal of Propulsion Technology,2000,21(3):53-55(in Chinese).
    [15]赵一鹗,余少志.复杂几何形状喷管内外三维流场的数值模拟[J].推进技术,2000,21(3):30-33.Zhao Y E,Yu S Z.Numerical simulation on internal and external flowfields of nozzle with complex geometry[J].Journal of Propulsion Technology,2000,21(3):30-33(in Chinese).
    [16]Gerolymos G A,Vallet I,B?Lcs P O,et al.Computation of unsteady three-dimensional transonic nozzle flows using k-εturbulence closure[J].AIAA Journal,1996,34(7):1331-1340.
    [17]Hoffmann K A,Suzen Y B,Papadakis M.Numerical computation of high speed exhaust flows:AIAA95-0758[R].Reno,NV,U.S.A:AIAA,1995.
    [18]乔渭阳,蔡元虎,齐少军,等.次流喷射控制推力矢量喷管的流场数值模拟[J].推进技术,2000,21(6):18-20,35.Qiao W Y,Cai Y H,Qi S J,et al.Flowfield numerical modeling of the thrust vector control nozzle based on secondary flow injection[J].Journal of Propulsion Technology,2000,21(6):18-20,35(in Chinese).
    [19]黄胜,王超.基于的偏流导流板的初步设计[C]//黑龙江省造船工程学会2007年学会年会文集.[S.l.:s.n.],2007.
    [20]黄爱华,段红春.某大型运输机发动机尾喷口射流参数研究[J].中国工程机械学报,2016,14(3):277-280.Huang A H,Duan H C.Parametric study on engine nozzle jet for specific large aerotransport[J].Chinese Journal of Construction Machinery,2016,14(3):277-280(in Chinese).
    [21]郭涛.偏流板性能的分析与计算[D].哈尔滨:哈尔滨工程大学,2010.Guo T.Performance analysis and calculation of drift plate[D].Harbin:Harbin Engineering University,2010(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700