基于热力学试验和数值方法的非线性衬里材料性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on physical properties of nonlinear lining material based on thermal-mechanical tests and numerical simulation
  • 作者:刘铭刚 ; 闫怡飞 ; 闫涛 ; 宋胜利 ; 周晓奇 ; 杨秀娟 ; 闫相祯
  • 英文作者:LIU Minggang;YAN Yifei;YAN Tao;SONG Shengli;ZHOU Xiaoqi;YANG Xiujuan;YAN Xiangzhen;College of Pipeline and Civil Engineering, China University of Petroleum;College of Electromechanical Engineering, China University of Petroleum;Sinopec Engineering (GROUP) Co., LTD;Petroleum Engineering Technology Research Institute of Zhongyuan Oilfield.Sinopec;
  • 关键词:衬里材料 ; 升保温试验 ; 力学试验 ; 导热系数 ; 数值试验
  • 英文关键词:lining material;;heating-insulating test;;mechanical test;;thermal conductivity;;numerical simulation
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:中国石油大学(华东)储运与建筑工程学院;中国石油大学(华东)机电工程学院;中国炼化工程股份有限公司;中国石油化工集团公司中原油田分公司;
  • 出版日期:2018-01-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2018
  • 期:v.49;No.281
  • 基金:中国博士后科学基金资助项目(2017M612375);; 国家自然科学基金资助项目(51374228);; 国家科技重大专项(2016ZX05017-003)~~
  • 语种:中文;
  • 页:ZNGD201801007
  • 页数:8
  • CN:01
  • ISSN:43-1426/N
  • 分类号:53-60
摘要
通过物理试验和数值试验对衬里材料热-力学性质进行研究。对工业上测定高温、内压作用下的大型衬里设备材料导热系数时不能有效模拟环境载荷及升保温控制的问题,设计实际可行的室内升保温试验,对衬里材料在设备高温运行状态下导热性质进行研究。通过力学试验研究衬里材料力学性质和强度破坏形式,讨论衬里材料力学性质随围压的变化规律。将物理试验参数下的耦合数值试验结果与规范对比。研究结果表明:室内升保温试验和力学试验可作为衬里材料传热特性和力学性质参数获取的方案,为数值试验模拟实际工况提供数据支持;当金属质量分数升高时,同等围压条件下的衬里材料抗压强度有明显提高;当金属质量分数一定时,衬里抗压强度随着围压的增大而提高;随着围压增大,衬里弹性模量和本构曲线的斜率都增大,应力极值也相应提高,且在达到应力峰值后,轴向应力平缓下降,径向应力则逐渐趋于平稳;衬里层整体内侧受压,外侧受拉,具有应力不对称特征。物理试验与数值试验相结合是研究衬里材料热-力学性质的有效方法。
        The thermal-mechanical properties of lining material were studied by physical tests and numerical simulation. Indoor heating-insulating test was designed to measure the thermal properties of lining material under the condition of high temperature, and the mechanical properties and failure mode of the liner with the confining pressure changing were studied by mechanical test. The thermal-mechanical numerical simulation based on the physics test result was conducted and compared with the standard regulation in ASME. The results show that the indoor heating-insulating test and mechanical test can be taken as ways to get the heat-transfer characteristics and mechanical properties of the lining material and provides data support to the simulation of real condition on numerical method. The compressive strength of lining material is improved significantly when the metal content increases and the compressive strength increases when the confining pressure increases with the metal content fixed. As the confining pressure increases, the elasticity modulus and the curve slope of constitutive increases, and the maximum stress increases correspondingly. When the stress reaches the peak, the axial stress gradually falls and radial stress gradually stabilizes. The inner layer is under pressure and the outer is under tension and it has a stress asymmetry. Combining physical testing with numerical simulation is an effective method for the study of lining material properties.
引文
[1]刘铭刚,杨秀娟,闫相祯,等.准脆性高温设备衬里材料热固耦合应力研究及计算[J].炼油技术与工程,2015,45(1):43-48.LIU Minggang,YANG Xiujuan,YAN Xiangzhen,et al.Study on thermo-mechanical characteristics of quasi-brittle lining materials in high-temperature equipment and numerical simulation[J].Petroleum Refinery Engineering.2015,45(1):43-48.
    [2]ROBIN J M.Thermalmechanical behaviour of magnesia-Carbon refractories[J].British Ceramic Transactions,1998,97(1):1-10.
    [3]BOISSE P,GASSER A.Computations of refractory linings structures under thermal loadings[J].Advances in Engineering Software,2002,33:487-496.
    [4]POIRIER J.Thermomechanical simulation of refractory linings-an overview[J].Refractories Applications and News,2003,8(6):16-22.
    [5]ASMEⅧ,Division 1-rules for construction of pressure vessels[S].
    [6]张荣克.催化裂化装置再生系统设备壁温及散热计算[J].石油化工设备技术,1999,20(2):1-7.ZHANG Rongke.Wall temperature and heat radiation calculation of regeneration system equipment of cabalistic cracker[J].Petro-Chemical Equipment Technology,1999,20(2):1-7.
    [7]顾比伦.隔热耐磨衬里管道的应力分析方法[J].石油化工设备技术,2010,31(6):15-18.GU Bilun.Stress analysis method for piping systems with refractory wear-proof lining[J].Petro-Chemical Equipment Technology,2010,31(6):15-18.
    [8]胡书君.衬里管道的应力分析[J].化工设计,2004,14(2):11-19.HU Shujun.Stress analysis of lined pipeline[J].Chemical Engineering Design,2004,14(2):11-19.
    [9]王教方,岳贤军,宋淑珍,等.多层复合材料导热系数测定方法的研究[J].山东建材学院学报,2000,14(3):258-260.WANG Jiaofang,YUE Xianjun,SONG Shuzhen,et al.The research of determine method for the thermal conductivity of many multiple matreials[J].Journal of Shandong Institute of Building Materials,2000,14(3):258-260.
    [10]严云.催化裂化装置用隔热耐磨衬里的现状和发展趋势[J].耐火材料,2000,34(6):356-358.YAN Yun.Current situation and developing trend of insulating and wearing-resistant concrete lining for fluid catalytic cracking units[J].China’s Refractories,2000,34(6):356-358.
    [11]冯清晓,闫涛.我国炼油化工装置设备隔热耐磨衬里技术与国外的差异[J].石油化工设备技术,2012,33(3):13-18.FENG Qingxiao,YAN Tao.Difference between domestic heat-insulating and wear-resisting lining technology and foreign technology in petrochemical units[J].Petrochemical Equipment Technology,2012,33(3):13-20.
    [12]闫涛.大型催化裂化装置带衬里内集气室的强度及安全可靠性研究[D].青岛:中国石油大学(华东)储运与建筑工程学院,2013:20-26.YAN Tao.Strength and safe reliability analysis of refractory lining internal plenum in large-scale FCC units[D].Qingdao:China University of Petroleum(East China College of Pipeline and Civil Engineering),2013:20-26.
    [13]王辉,徐明海.热流体循环防蜡工艺数值模拟及参数优选[J].中国石油大学学报(自然科学版),2012,36(6):142-146.WANG Hui,XU Minghai.Numerical simulation and parameter optimization for hot fluids circulation wax inhibition process[J].Journal of China University of Petroleum(Edition of Natural Science),2012,36(6):142-146.
    [14]刘军,林皋.适用于混凝土结构非线性分析的损伤本构模型研究[J].土木工程学报,2012,45(6):50-57.LIU Jun,LIN Gao.Study of damage constitutive model applied to simulate nonlinear behavior of concrete structures[J].China Civil Engineering Journal,2012,45(6):50-57.
    [15]张彦春,胡晓波,白成彬.钢纤维混凝土高温后力学强度研究[J].混凝土,2001,143(9):50-53.ZHANG Yanchun,HU Xiaobo,BAI Chengbin.Research on mechanical strength of steel-fiber reinforced concrete after exposure to high temperature[J].Concrete,2001,143(9):50-53.
    [16]YAN Yifei,SHAO Bing,XU jianguo,et al.Finite-element optimized back analysis of in-situ stress field and stability analysis of shaft wall in the underground gas storage[J].Mathetical Problems in Engineering,2016(2):235-246.
    [17]柏巍,彭刚,周丽娜,等.钢纤维混凝土动态特性三轴试验研究[J].矿业研究与开发,2008,28(1):21-24.BAI Wei,PENG Gang,ZHOU Lina,et al.Triaxial test on dynamic characteristics of steel fiber reinforced concrete[J].Mining R&D,2008,28(1):21-24.
    [18]YAN Yifei,ZHANG Lisong,YAN Xiangzhen.Push force analysis of anchor block of the oil and gas pipeline in a single-slope tunnel based on the energy balance method[J].Plos One,2016(3):1-18.
    [19]闫怡飞,董卫,邵兵,等.CO2和H2S共存酸性环境OCTG材料选用研究[J].中国石油大学学报(自然科学版),2015,39(4):159-164.YAN Yifei,DONG Wei,SHAO Bing,et al.Material selection of OCTG in sour environment with CO2 and H2S coexisting[J].Journal of China University of Petroleum(Edition of Natural Science),2015,39(4):159-164.
    [20]王计敏,闫红杰,周孑民,等.铝熔炼炉炉衬组合的优化模拟[J].中南大学学报(自然科学版),2012,43(4):1523-1531.WANG Jimin,YAN Hongjie,ZHOU Jie-min.Numerical simulation and optimizing combination of aluminum melting furnace linings[J].Journal of Central South University(Science and Technology),2012,43(4):1523-1531.
    [21]刘铭刚,杨秀娟,闫相祯,等.催化裂化装置衬里-金属复合结构非稳态热载传热研究[J].炼油技术与工程,2015,45(7):25-28.LIU Minggang,YANG Xiujuan,YAN Xiangzhen,et al.Study on heat transfer of composite lining-metal structure in unstable temperature field of FCCU[J].Petroleum Refinery Engineering,2015,45(7):25-28.
    [22]黄志凌,金龙哲,詹子娜,等.避难硐室温度计算模型及影响因素[J].中南大学学报(自然科学版),2015,46(11):4274-4280.HUANG Zhiling,JIN Longzhe,ZHAN Zina,et al.Mathematical model and influencing factor of temperature in refuge chamber[J].Journal of Central South University(Science and Technology),2015,46(11):4274-4280.
    [23]GB 50474—2008,隔热耐磨衬里技术规范[S].GB 50474—2008,Technical specification for heat-insulation and wear-resistant linings[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700