基于分子层面研究海藻多糖与纤维素分子共热解协同现象
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MOLECULAR DYNAMIC SIMULATION STUDY ON SYNERGISTIC CO-PYROLYSIS BEHAVIORS OF MIXED CELLULOSE AND SEAWEED POLYSACCHARIDE
  • 作者:王爽 ; 夏禛 ; 林骁驰 ; 王谦 ; 胡亚敏 ; 徐姗楠
  • 英文作者:Wang Shuang;Xia Zhen;Lin Xiaochi;Wang Qian;Hu Yamin;Xu Shannan;School of Energy and Power Engineering,Jiangsu University;Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization,Ministry of Agriculture,South China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences;
  • 关键词:生物质 ; 共热解 ; 分子动力学模拟 ; 协同耦合现象
  • 英文关键词:biomass;;co-pyrolysis;;molecular dynamic simulation;;synergistic co-pyrolysis behaviors
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:江苏大学能源与动力工程学院;中国水产科学研究院南海水产研究所农业部南海渔业资源开发利用重点实验室;
  • 出版日期:2018-07-28
  • 出版单位:太阳能学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金(51676091)
  • 语种:中文;
  • 页:TYLX201807025
  • 页数:7
  • CN:07
  • ISSN:11-2082/TK
  • 分类号:186-192
摘要
通过对海藻多糖、纤维素模型化合物的共热解过程进行分子动力学模拟,探究其协同耦合现象。选取海藻内2种主要的多糖分子(硫酸多糖、褐藻糖胶)和陆生生物质的主要成分纤维素为研究对象。模拟基于Amber力场和ReaxFF力场发现:虽然海藻多糖与纤维素热解特性有许多相似之处,但分子结构上的差异使两者在热解过程中表现出不同的热力学特征。其中最明显的是两者热解温度范围不完全重叠,多糖分子提前热解产生大量的氢提供给纤维素,使纤维素热解更充分。共热解与单独热解叠加的模拟结果相比较,分子裂解碎片数目差异较大,共热解可促进两者的热解,提高热解转化率,增加中温段的产气率。
        In order to understand the synergistic coupling pyrolysis mechanism between seaweed polysaccharide andcellulose,the molecular dynamics simulation method is used to analyse the co-pyrolysis of the model compoundmolecular of seaweed polysaccharide and cellulose.The molecular simulations are based on the AMBER force field andthe Reax FF force field,and the objects are cellulose molecule and two major kinds of seaweed polysaccharidemolecules:enteromorpha clathrata sulfated polysaccharide and fucoidan.The simulation results showed that there are alot of similarities in the pyrolysis characteristics of seaweed polysaccharide and cellulose,but the differences inmolecular structure make the different thermodynamic characteristics in the pyrolysis process.One of the most obvious isthat the pyrolysis temperature range is not completely overlap.The polysaccharide molecules produce hydrogen tocellulose,so that the cellulose pyrolysis more completely.Compared with the single pyrolysis,the number of molecularfragments increased.Co-pyrolysis could increase the pyrolysis conversion rate and oil production,and increase gasproduction rate in the middle temperature section.
引文
[1]Kwon G J,Kim D Y,Kimura S,et al.Rapid-cooling,conti-nuous-feed pyrolyzer for biomass processing:Preparation of levoglucosan from cellulose and starch[J].Journal of Analytical and Applied Pyrolysis,2007,80(1):1-5.
    [2]Duman G,Uddin M A,Yanik J.Hydrogen production from algal biomass via steam gasification[J].Bioresource Technology,2014,166(1):24-30.
    [3]王爽,王宁,于立军,等.海藻热解特性分析[J].中国电机工程学报,2007,27(14):102-106.[3]Wang Shuang,Wang Ning,Yu Lijun,et al.Analysis of the pyrolysis characteristics of marine algae[J].Proceedings of the Chinese Society for Electrical Engineering,2007,27(14):102-106.
    [4]Wang Shuang,Wang Qian,Hu Yamin,et al.Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIRtechnique[J].Journal of Analytical and Applied Pyrolysis,2015,114(1):109-118.
    [5]Wu Zhiqiang,Wang Shuzhong,Zhao Jun,et al.Synergistic effect on thermal behavior during copyrolysis of lignocellulosic biomass model components blend with bituminous coal[J].Bioresource Technology,2014,169(1):220-228.
    [6]Guo Min,Bi Jicheng.Characteristics and application of co-pyrolysis of coal/biomass blends with solid heat carrier[J].Fuel Processing Technology,2015,138(1):743-749.
    [7]Hua Meiyu,Li Baoxia.Co-pyrolysis characteristics of the sugarcane bagasse and Enteromorpha prolifera[J].Energy Conversion and Management,2016,120(1):238-246.
    [8]Wang Xin,Zhao Bingwei,Yang Xiayi.Co-pyrolysis of microalgae and sewage sludge:Biocrude assessment and char yield prediction[J].Energy Conversion and Management,2016,117(1):326-334.
    [9]Xie Qinglong,Min A,Liu Shiyu,et al.Fast microwaveassisted catalytic co-pyrolysis of microalgae and scum for bio-oil production[J].Fuel,2015,160(1):577-582.
    [10]Li Demao,Chen Limei,Chen Shulin,et al.Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga(Sargassum thunbergii)and a freshwater plant(Potamogeton crispus)[J].Fuel,2012,96(1):185-191.
    [11]Chen Weihsin,Kuo Po-Chih.Isothermal torrefaction kinetics of hemicellulose,cellulose,lignin and xylan using thermo-gravimetric analysis[J].Energy,2011,36(11):6451-6460.
    [12]Bech N,Larsen M,Jensen P,et al.Modelling solid convective flash pyrolysis of straw and wood in the pyrolysis centrifuge reactor[J].Biomass and Bioenergy,2009,33(6):999-1011.
    [13]纪明侯.海藻化学[M].北京:科学出版社,1997,280-373.[13]Ji Minghou.Seaweed chemical[M].Beijing:Science Press,1997,280-373.
    [14]江德正,刘朝,魏顺安,等.纤维素热解过程的分子动力学模拟[J].工程热物理学报,2009,30(12):1986-1990.[14]Jiang Dezheng,Liu Zhao,Wei Shunan,et al.Molecular dynamics simulation of pyrolysis process of cellulose[J].Journal of Engineering Thermo physics,2009,30(12):1986-1990.
    [15]黄金保,童红,李伟民,等.基于分子动力学模拟的半纤维素热解机理研究[J].热力发电,2013,(3):25-30.[15]Huang Jinbao,Tong Hong,Li Weimin,et al.Study on the pyrolysis mechanism of semi-cellulose based on molecular dynamics simulation[J].Thermal Power Generation,2013(3):25-30.
    [16]刘荣厚.生物质热化学转化技术[M].北京:化学工业出版社,2005.[16]Liu Ronghou.Biomass thermochemical conversion technology[M].Beijing:Chemical Industry Press,2005.
    [17]黄旭炜,鲁旭,韩帅,等.风机叶片用PU改性乙烯基树脂热解过程的Reax FF反应分子动力学模拟[J].高分子学报,2015,(10):1133-1142.[17]Huang Xuwei,Lu Xu,Han Shuai,et al.The molecular dynamics simulation of Reax FF reaction in the pyrolysis process of PU modified vinyl resin for fan blades[J].Journal of Polymer Science,2015,(10):1133-1142.
    [18]王树荣,廖艳芬,谭洪,等.纤维素快速热裂解机理试验研究Ⅱ.机理分析[J].燃料化学学报,2003,31(4):317-321.[18]Wang Shurong,Liao Yanfen,Tan Hong,et al.Experimental study on the mechanism of rapid pyrolysis of cellulose.Mechanism analysing[J].Journal of Fuel Chemistry,2003,31(4):317-321.
    [19]郭秀娟.生物质选择性热裂解机理研究[D].杭州:浙江大学,2011.[19]Guo Xiujuan.Study on the mechanism of selective pyrolysis of biomass[D].Hangzhou:Zhejiang University,2011.
    [20]Cornelissen T,Jans M,Yperman J,et al.Flash copyrolysis of biomass with polyhydroxybutyrate:Part 1.Influence on biooil yield,water content,heating value and the production of chemicals[J].Fuel,2008,87(12):2523-2532.
    [21]Wu Chunfei,Wang Zichun,Huang Jun,et al.Pyrolysis/gasification of cellulose,hemicellulose and lignin for hydrogen production in the presence of various nickelbased catalysts[J].Fuel,2013,106(1):697-706.
    [22]Martínez J D,Veses A,Mastral A M,et al.Copyrolysis of biomass with waste tyres:Upgrading of liquid biofuel[J].Fuel Processing Technology,2014,119(1):263-271.
    [23]郭凯,李伟振,王立群,等.煤与生物质(稻秸秆)共热解反过程及协同性研究[J].郑州轻工业学院学报:自然科学版,2008,23(5):77-80.[23]Guo Kai,Li Weizhen,Wang Liqun,et al.Study on the inverse process of CO pyrolysis of coal and biomass(straw)[J].Journal of Zhengzhou University of Light Industry:Natural Science Edition,2008,23(5):77-80.
    [24]Brebu M,Ucar S,Vasile C,et al.Co-pyrolysis of pine cone with synthetic polymers[J].Fuel,2010,89(8):1911-1918.
    [25]石婷,邓军,王小芳,等.煤自燃初期的反应机理研究[J].燃料化学学报,2004,32(6):652-657.[25]Shi Ting,Deng Jun,Wang Xiaofang,et al.Study on the reaction mechanism of coal spontaneous combustion[J].Journal of Fuel Chemistry,2004,32(6):652-657.
    [26]闫秋会,郭烈锦.生物质与煤超临界水气化制氢的实验研究[J].西安交通大学学报,2008,42(6):765-769[26]Yan Qiuhiu,Guo Liejin.Experimental study of coal and biomass gasification in supercritical water for hydrogen production[J].Journal of Xi’an Jiaotong University,2008,42(6):765-769.
    [27]王鹏,文芳,边文,等.煤与生物质共热解特性初步研究[J].煤炭转化,2008,31(4):40-44.[27]Wang Peng,Wen Fang,Bian Wen,et al.Preliminary study on CO pyrolysis characteristics of coal and biomass[J].Coal Conversion,2008,31(4):40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700