基于多隐层Gibbs采样的深度信念网络训练方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Deep Belief Networks Training Strategy Based on Multi-hidden Layer Gibbs Sampling
  • 作者:史科 ; 陆阳 ; 刘广亮 ; 毕翔 ; 王辉
  • 英文作者:SHI Ke;LU Yang;LIU Guang-Liang;BI Xiang;WANG Hui;School of Computer Science and Information Engineering,Hefei University of Technology;Engineering Research Center of Safety Critical Industry Measure and Control Technology,Ministry of Education;
  • 关键词:深度信念网络 ; 受限玻尔兹曼机 ; Gibbs采样 ; 对比散度
  • 英文关键词:Deep belief network(DBN);;restricted Boltzmann machine(RBM);;Gibbs sampling;;contrastive divergence(CD)
  • 中文刊名:MOTO
  • 英文刊名:Acta Automatica Sinica
  • 机构:合肥工业大学计算机与信息学院;安全关键工业测控技术教育部工程研究中心;
  • 出版日期:2018-10-11 09:28
  • 出版单位:自动化学报
  • 年:2019
  • 期:v.45
  • 基金:国家重点研发计划专项(2016YFC0801804,2016YFC0801405);; 国家自然科学基金(61572167)资助~~
  • 语种:中文;
  • 页:MOTO201905014
  • 页数:10
  • CN:05
  • ISSN:11-2109/TP
  • 分类号:149-158
摘要
深度信念网络(Deep belief network, DBN)作为一类非常重要的概率生成模型,在多个领域都有着广泛的用途.现有深度信念网的训练分为两个阶段,首先是对受限玻尔兹曼机(Restricted Boltzmann machine, RBM)层自底向上逐层进行的贪婪预训练,使得每层的重构误差最小,这个阶段是无监督的;随后再对整体的权值使用有监督的反向传播方法进行精调.本文提出了一种新的DBN训练方法,通过多隐层的Gibbs采样,将局部RBM层组合,并在原有的逐层预训练和整体精调之间进行额外的预训练,有效地提高了DBN的精度.本文同时比较了多种隐层的组合方式,在MNIST和ShapeSet以及Cifar10数据集上的实验表明,使用两两嵌套组合方式比传统的方法错误率更低.新的训练方法可以在更少的神经元上获得比以往的训练方法更好的准确度,有着更高的算法效率.
        Deep belief network(DBN) is a very important probabilistic generative model that can be used in many areas.The current training approach of DBN involves two phases. The first is a fully unsupervised pre-training process, which is a down-top and layer-by-layer one to train the restricted Boltzmann machine(RBM) layers, making the reconstruction error of each layer minimal. The second is a supervised stage which uses the back propagation to fine-tune the entire parameters of the model. In this paper, a new training strategy for DBN is proposed. Between the current two training phases, this paper introduces another training strategy to combine multiple local RBMs into an overall probability model for multi hidden layer Gibbs sampling, which effectively improves the accuracy of DBN. This paper has compared a variety of combinations of RBM layers, experiments on the MNIST, ShapeSet and Cifar10 dataset show that our method outperforms the existing training algorithms for DBN. The new algorithm can achieve better accuracy with fewer neurons,also achieves higher algorithm efficiency.
引文
1 Bengio Y. Learning deep architectures for AI. Foundations&Trends in Machine Learning, 2009, 2(1):1-127
    2 Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507
    3 Lee H, Grosse R, Ranganath R, Ng A Y. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 2011, 54(10):95-103
    4 Goh H, Thome N, Cord M, Lim J H. Learning deep hierarchical visual feature coding. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(12):2212-2225
    5 Mohamed A R, Dahl G E, Hinton G. Acoustic modeling using deep belief networks. IEEE Transactions on Audio,Speech, and Language Processing, 2012, 20(1):14-22
    6 Sarikaya R, Hinton G E, Deoras A. Application of deep belief networks for natural language understanding. IEEE/ACM Transactions on Audio, Speech, and Language Processing,2014, 22(4):778-784
    7 Duan Yan-Jie, Lv Yi-Sheng, Zhang Jie, Zhao Xue-Liang,Wang Fei-Yue. Deep learning for control:the state of the art and prospects. Acta Automatica Sinica, 2016, 42(5):643-654(段艳杰,吕宜生,张杰,赵学亮,王飞跃.深度学习在控制领域的研究现状与展望.自动化学报, 2016, 42(5):643-654)
    8 Wu F, Wang Z H, Lu W M, Li X, Yang Y, Luo J B, et al.Regularized deep belief network for image attribute detection. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(7):1464-1477
    9 Wang B Y, Klabjan D. Regularization for unsupervised deep neural nets. In:Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, CA, USA:AAAI,2017. 2681-2687
    10 Goh H, Thome N, Cord M, Lim J H. Top-down regularization of deep belief networks. In:Proceedings of the26 th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA:ACM, 2013.1878-1886
    11 Li Fei, Gao Xiao-Guang, Wan Kai-Fang. Research on RBM training algorithm with dynamic Gibbs sampling. Acta Automatica Sinica, 2016, 42(6):931-942(李飞,高晓光,万开方.基于动态Gibbs采样的RBM训练算法研究.自动化学报, 2016, 42(6):931-942)
    12 Qiao Jun-Fei, Wang Gong-Ming, Li Xiao-Li, Han Hong-Gui,Chai Wei. Design and application of deep belief network with adaptive learning rate. Acta Automatica Sinica, 2017,43(8):1339-1349(乔俊飞,王功明,李晓理,韩红桂,柴伟.基于自适应学习率的深度信念网设计与应用.自动化学报, 2017, 43(8):1339-1349)
    13 Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554
    14 Salakhutdinov R, Murray I. On the quantitative analysis of deep belief networks. In:Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland:ACM, 2008. 872-879
    15 Hinton G E. A practical guide to training restricted Boltzmann machines. Neural Networks:Tricks of the Trade.Berlin, Germany:Springer, 2012. 599-619
    16 Salakhutdinov R, Hinton G. Deep Boltzmann machines. In:Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Florida, USA:PMLR, 2009.1967-2006
    17 Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P A. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 2010, 11:3371-3408
    18 Nielsen M. Neural Networks and Deep Learning. Determination Press[Online], available:http://neuralnet worksanddeeplearning.com, February 9, 2018.
    19 Tieleman T. Training restricted Boltzmann machines using approximations to the likelihood gradient. In:Proceedings of the 25th International Conference on Machine Learning.Helsinki, Finland:ACM, 2008. 1064-1071
    20 Tieleman T, Hinton G. Using fast weights to improve persistent contrastive divergence. In:Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Quebec, Canada:ACM, 2009. 1033-1040
    21 Abdel-Hamid O, Deng L, Yu D, Jiang H. Deep segmental neural networks for speech recognition. In:Proceedings of the 14th Annual Conference of the International Speech Communication Association. Lyon, France:International Speech and Communication Association, 2013. 1849-1853
    22 Bengio Y, Thibodeau-LauferE, Alain G, Yosinski J. Deep generative stochastic networks trainable by backprop. In:Proceedings of the 31st International Conference on Machine Learning. Beijing, China:JMLR, 2014. 226-234
    23 Wang X S, Ma Y T, Cheng Y H. Domain adaptation network based on hypergraph regularized denoising autoencoder. Artificial Intelligence Review, DOI:10.1007/s10462-017-9576-0

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700