模拟失重大鼠对间断性人工重力反应的系统特异性(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Systems specificity in responsiveness to intermittent artificial gravity during simulated microgravity in rats
  • 作者:张立藩 ; 张舒
  • 英文作者:ZHANG Li-Fan;ZHANG Shu;Departments of Aerospace Physiology,The Fourth Military Medical University;Departments of Aerospace Biodynamics,The Fourth Military Medical University;
  • 关键词:航天飞行 ; 失重 ; ; 血管 ; 连续性人工重力 ; 间断性人工重力 ; 短臂离心机 ; 张力整合模型 ; 生理组学 ; 系统生物学
  • 英文关键词:spaceflight;;weightlessness;;bone;;vessels;;continuous artificial gravity;;intermittent artificial gravity;;short arm centrifuge;;tensegrity model;;physiomics;;systems biology
  • 中文刊名:SLXU
  • 英文刊名:Acta Physiologica Sinica
  • 机构:第四军医大学航空航天生理学教研室;第四军医大学航空航天生物动力学教研室;
  • 出版日期:2016-08-15 10:13
  • 出版单位:生理学报
  • 年:2016
  • 期:v.68
  • 基金:supported by grants from the National Natural Science Foundation of China(No.30171032,30470649);; the Defense Medical Fund of China(No.98Z083,01Q114)
  • 语种:英文;
  • 页:SLXU201604005
  • 页数:12
  • CN:04
  • ISSN:31-1352/Q
  • 分类号:33-44
摘要
业已证实,生理系统最低重力暴露的需求存在较大差异。例如,在血管与骨这两个截然不同系统之间的初步比较研究得知,两者不仅在组织水平的力学调控机制差异较大,且失重性骨质丢失还与钙沉积-吸收的变化有关。间断性人工重力对血管的有效防护作用可能与血管拥有在1 G重力环境下恢复其原有预应力和张力整合状态的"记忆"功能有关。除长期的钙沉积-吸收过程,骨组织还涉及成骨细胞和破骨细胞更为复杂的张力整合模型机制。细胞水平的钙动力学模型(Cell ML)业已提出,我们希望生理组学能够利用这类模型框架进一步解释骨组织对间断性人工重力反应性低下的机制;并评估"间断性"或"连续性"人工重力方案何者更适用于未来探索级航天飞行任务。
        It has been shown that the minimum gravity exposure requirements vary greatly among different physiological systems. A preliminary comparison between two extremes, vessels vs. bones, shows that not only the mechanostat at the tissue level differs greatly, but also the bone loss during weightlessness may also involve calcium deposition-resorption changes. It seems that the surprising efficacy of intermittent artificial gravity(IAG) is due to the vascular tissues possessing a strong resilience or "memory" function toward restoring their original pre-stress and tensegrity state at the 1 G environment. It appears that the bone tissue is related to a more complex tensegrity paradigm involving both osteoblasts and osteoclasts, and a longer half time for calcium deposition-absorption. Cell-level models(Cell ML) for calcium dynamics is currently available. We hope that the Physiome Project can use this modeling framework to help interpret the resistance of bones to IAG and to evaluate whether the "intermittent" or "continuous" AG scheme should be adopted eventually for future exploration-class spaceflight.
引文
1 Clement C.Fundamentals of Space Medicine.Netherlands:Microcosm Press,2005.
    2 Buckey JC Jr.Space Physiology.New York:Oxford University Press,2006.
    3 Young L,Yajima K,Paloski W.Artificial Gravity Research To Enable Human Space Exploration.International Academy of Astronatics,2009:1-37.
    4 Blomqvist CG,Stone HL.Cardiovascular adjustments to gravitational stress.In:Shepherd JT,Abboud FM,eds.The Cardiovascular System.Handbook of Physiology.Bethesda:The American Physiological Society,1983,1025-1063.
    5 Hastings JL,Krainski F,Snell PG,Pacini EL,Jain M,Bhella PS,Shibata S,Fu Q,Palmer MD,Levine BD.Effect of rowing ergometry and oral volume loading on cardiovascular structure and function during bed rest.J Appl Physiol 2012;112(10):1735-1743.
    6 Levine BD,Zuckerman JH,Pawelczyk JA.Cardiac atrophy after bed-rest deconditioning:a nonneural mechanism for orthostatic intolerance.Circulation 1997;96(2):517-525.
    7 Perhonen MA,Franco F,Lane LD,Buckey JC,Blomqvist CG,Zerwekh JE,Peshock RM,Weatherall PT,Levine BD.Cardiac atrophy after bed rest and spaceflight.J Appl Physiol 2001;91(2):645-653.
    8 Zhang LF,Yu ZB,Ma J,Mao QW.Peripheral effector mechanism hypothesis of postflight cardiovascular dysfunction.Aviat Space Environ Med 2001;72(6):567-575.
    9 Delp MD.Myogenic and vasoconstrictor responsiveness of skeletal muscle arterioles is diminished by hindlimb unloading.J Appl Physiol 1999;86(4):1178-1184.
    10 Wilkerson MK,Lesniewski LA,Golding EM,Bryan RM Jr,Amin A,Wilson E,Delp MD.Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism.Am JPhysiol Heart Circ Physiol 2005;288(4):H1652-1661.
    11 Zhang LF.Vascular adaptation to microgravity:what have we learned?J Appl Physiol 2001;91(6):2415-2430.
    12 Zhang LF.Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment.Eur JAppl Physiol 2013;113(12):2873-2895.
    13 Watenpaugh DE,Hargens AR.The cardiovascular system in microgravity.In:Fregly MJ,Blatteis CM,eds.Handbook of Physiology:Environmental Physiology.New York:Oford University Press,1996,631-674.
    14 Buckey JC Jr,Lane LD,Levine BD,Watenpaugh DE,Wright SJ,Moore WE,Gaffney FA,Blomqvist CG.Orthostatic intolerance after spaceflight.J Appl Physiol 1996;81(1):7-18.
    15 Buckey JC Jr,Homick JL.Standing after spaceflight:The effects of weightlessness on blood pressure.In:Buckey JCJr,Homick JL,eds.The Neurolab Spacelab Mission:Neuroscience Research in Space.Publisher:NASA,2003,171-172.
    16 Blomqvist CG.Regulation of the systemic circulation at microgravity and during readaptation to 1G.Med Sci Sports Exerc 1996;28(10 Suppl):S9-13.
    17 Zhang LF,Chen JE,Ding ZP,Ma J.Cardiovascular deconditioning effects of long-term simulated weightlessness in rats.Physiologist 1993;36(1 Suppl):S26-S27.
    18 Le Blanc AD,Spector ER,Evans HJ,Sibonga JD.Skeletal responses to space flight and the bed rest analog:a review.JMusculoskelet Neuronal Interact 2007;7(1):33-47.
    19 Mader TH,Gibson CR,Pass AF,Kramer LA,Lee AG,Fogarty J,Tarver WJ,Dervay JP,Hamilton DR,Sargsyan A,Phillips JL,Tran D,Lipsky W,Choi J,Stern C,Kuyumjian R,Polk JD.Optic disc edema,globe flattening,choroidal folds,and hyperopic shifts observed in astronauts after long-duration space flight.Ophthalmology 2011;118(10):2058-2069.
    20 Kramer LA,Sargsyan AE,Hasan KM,Polk JD,Hamilton DR.Orbital and intracranial effects of microgravity:findings at 3-T MR imaging.Radiology 2012;263(3):819-827.
    21 Marshall-Bowman K,Barratt MR,Gibson CR.Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight:An emerging understanding.Acta Astronautica 2013;87:77-87.
    22 Burton RR,Meeker LJ.Taking gravity into space.J Gravit Physiol 1997;4(2):P17-P20.
    23 Shipov AA.Artificial gravity.In:Leach Huntoon CS,Antipov VV,Grigoriev AI,eds.Space Biology and Medicine.Publisher:AIAA,1996,349-363.
    24 Kreitenberg A,Baldwin KM,Bagian JP,Cotten S,Witmer J,Caiozzo VJ.The“Space Cycle”Self Powered Human Centrifuge:a proposed countermeasure for prolonged human spaceflight.Aviat Space Environ Med 1998;69(1):66-72.
    25 Zhang LF(张立藩).Biomedical problems of artificial gravity:overview and challenge.Space Med Med Eng(Beijing)(航天医学与医学工程)2001;14(1):70-74(in Chinese with English abstract).
    26 Kotovskaia AR.The problem of artificial gravity:the present status and possible approaches.Aviakosm Ekolog Med 2008;42(6):74-83(in Russian with English abstract).
    27 Hargens AR,Richardson S.Cardiovascular adaptations,fluid shifts,and countermeasures related to space flight.Respir Physiol Neurobiol 2009;169 Suppl 1:S30-S33.
    28 Lee SM,Moore AD,Everett ME,Stenger MB,Platts SH.Aerobic exercise deconditioning and countermeasures during bed rest.Aviat Space Environ Med 2010;81(1):52-63.
    29 Clement G,Pavy-Le Traon A.Centrifugation as a countermeasure during actual and simulated microgravity:a review.Eur J Appl Physiol 2004;92(3):235-248.
    30 Vil-Viliams IF,Kotovskaya AR,Nikolashin GF,Lukjanuk VJ.Modern view on the short-arm centrifuge as a potential generator of artificial gravity in piloted missions.J Gravit Physiol 2001;8(1):P145-P146.
    31 Katayama K,Sato K,Akima H,Ishida K,Takada H,Watanabe Y,Iwase M,Miyamura M,Iwase S.Acceleration with exercise during head-down bed rest preserves upright exercise responses.Aviat Space Environ Med 2004;75(12):1029-1035.
    32 Caiozzo VJ,Rose-Gottron C,Baldwin KM,Cooper D,Adams G,Hicks J,Kreitenberg A.Hemodynamic and metabolic responses to hypergravity on a human-powered centrifuge.Aviat Space Environ Med 2004;75(2):101-108.
    33 Young LR,Paloski WH.Short radius intermittent centrifugation as a countermeasure to bed-rest and 0-G deconditioning:IMAG pilot study summary and recommendations for research.J Gravit Physiol 2007;14(1):P31-P33.
    34 Vernikos J,Ludwig DA,Ertl AC,Wade CE,Keil L,O’Hara D.Effect of standing or walking on physiological changes induced by head down bed rest:implications for spaceflight.Aviat Space Environ Med 1996;67(11):1069-1079.
    35 Morey-Holton E,Globus RK,Kaplansky A,Durnova G.The hindlimb unloading rat model:literature overview,technique update and comparison with space flight data.In:Sonnenfeld G.ed.Advances in Space Biology and Medicine.Vol.10.Experimentation with animal models in space.Amsterdam:Elsevier,2005,7-40.
    36 Morey-Holton ER,Globus RK.Hindlimb unloading rodent model:technical aspects.J Appl Physiol 2002;92(4):1367-1377.
    37 Chen J(陈杰),Ma J,Ding ZP,Zhang LF.A modified tail-suspension model for simulating long-term weightlessness.Chin J Space Sci(空间科学学报)1993;13:61-64(in Chinese with English abstract).
    38 Zhang LF,Sun B,Cao XS,Liu C,Yu ZB,Zhang LN,Cheng JH,Wu YH,Wu XY.Effectiveness of intermittent-Gx gravitation in preventing deconditioning due to simulated microgravity.J Appl Physiol 2003;95(1):207-218.
    39 Sun B,Cao XS,Zhang LF,Liu C,Ni HY,Cheng JH,Wu XY.Daily 4-h head-up tilt is effective in preventing muscle but not bone atrophy due to simulated microgravity.J Gravit Physiol 2003;10(2):29-38.
    40 Zhang LF,Cheng JH,Liu X,Wang S,Liu Y,Lu HB,Ma J.Cardiovascular changes of conscious rats after simulated microgravity with and without daily-Gx gravitation.J Appl Physiol 2008;105(4):1134-1145.
    41 Monos E,Raffai G,D?rnyei G,Nádasy GL,Fehér E.Structural and functional responses of extremity veins to longterm gravitational loading or unloading-lesson from animal systems.Acta Astronaut 2006;60:406-414.
    42 Sun B,Zhang LF,Gao F,Ma XW,Zhang ML,Liu J,Zhang LN,Ma J.Daily short-period gravitation can prevent functional and structural changes in arteries of simulated microgravity rats.J Appl Physiol 2004;97(3):1022-1031.
    43 Sun B(孙标),Ma XW,Yu ZB,Zhang LF.Daily short-period standing can partially alleviate testis atrophy due to simulated microgravity in rats.Chin J Aerospace Med(中华航空航天医学杂志)2004;15:78-82(in Chinese with English abstract).
    44 Gao F,Bao JX,Xue JH,Huang J,Huang WQ,Wu SX,Zhang LF.Regional specificity of adaptation change in large elastic arteries of simulated microgravity rats.Acta Physiol Hung 2009;96(2):167-187.
    45 Gao F,Cheng JH,Bai YG,Boscolo M,Huang XF,Zhang X,Zhang LF.Mechanical properties and composition of mesenteric small arteries of simulated microgravity rats with and without daily-Gx graviation.Acta Physiol Sin(生理学报)2012;64:107-120.
    46 Gao F(高放),Cheng JH,Xue JH,Bai YG,Chen MS,Huang WQ,Huang J,Wu SX,Han HC,Zhang LF.In-vivo and ex-vivo studies on region-specific remodeling of large elastic arteries due to simulated weightlessness and its prevention by gravity-based countermeasure.Acta Physiol Sin(生理学报)2012;64(1):14-26(in Chinese with English abstract).
    47 Lin LJ,Gao F,Bai YG,Bao JX,Huang XF,Ma J,Zhang LF.Contrasting effects of simulated microgravity with and without daily-Gx gravitation on structure and function of cerebral and mesenteric small arteries in rats.J Appl Physiol2009;107(6):1710-1721.
    48 Zhang LF.System specificity in responsiveness to intermittent-Gx gravitation during simulated microgravity in rats.JGravit Physiol 2005;12:P1-P4.
    49 Xue JH,Zhang LF,Ma J,Xie MJ.Differential regulation of L-type Ca2+channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing.Am J Physiol Heart Circ Physiol 2007;293(1):H691-H701.
    50 Zhang LN,Zhang LF,Ma J.Simulated microgravity enhances vasoconstrictor responsiveness of rat basilar artery.J Appl Physiol 2001;90(6):2296-2305.
    51 Cheng JH,Zhang LF,Gao F,Bai YG,Boscolo M,Huang XF,Zhang X.Mechanics and composition of middle cerebral arteries from simulated microgravity rats with and without 1-h/d-Gx Gravitation.PLo S One 2014;9(5):e97737.
    52 Bao JX,Zhang LF,Ma J.Angiotensinogen and AT1R expression in cerebral and femoral arteries during hindlimb unloading in rats.Aviat Space Environ Med 2007;78(9):852-858.
    53 Zhang LF,Zhang LN,Meng QJ,Fu ZJ.Research in differential adaptations of vessels to microgravity.J Gravit Physiol2002;9(1):P55-P58.
    54 Zhang LF,Bao JX.Vascular adaptation to microgravity:role and implications of local vascular renin-angiotensin system.In:Hargens A,Takeda N,Singal PK,eds.Adaptation Biology and Medicine,Volume 4:current concept.New Delhi:Narosa Publishing House,2005,329-339.
    55 Pavy-Le Traon A,Heer M,Narici MV,Rittweger J,Vernikos J.From space to Earth:advances in human physiology from 20 years of bed rest studies(1986-2006).Eur J Appl Physiol2007;101(2):143-194.
    56 Globus RK,Bikle DD,Halloran B,Morey-Holton E.Skeletal response to dietary calcium in a rat model simulating weightlessness.J Bone Miner Res 1986;1(2):191-197.
    57 Baecker N,Frings-Meuthen P,Smith SM,Heer M.Shortterm high dietary calcium intake during bedrest has no effect on markers of bone turnover in healthy men.Nutrition 2010;26(5):522-527.
    58 Lehoux S,Tedgui A.Cellular mechanics and gene expression in blood vessels.J Biomech 2003;36(5):631-643.
    59 Lehoux S,Castier Y,Tedgui A.Molecular mechanisms of the vascular responses to haemodynamic forces.J Intern Med 2006;259(4):381-392.
    60 Ingber DE.Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology.Circ Res 2002;91(10):877-887.
    61 Ingber DE,Wang N,Stamenovic D.Tensegrity,cellular biophysics,and the mechanics of living systems.Rep Prog Phys2014;77(4):046603.
    62 Srinivasan RS,Leonard JI,White RJ.Mathematical modeling of physiological states.In:Leach Huntoon CS,Antipov VV,Grigoriev AI,eds.Space Biology and Medicine.Publisher:AIAA,1996,559-594.
    63 Noble D.The Music of Life-Biology beyond the Genome.New York:Oxford University Press,2006,74-87.
    64 Noble D.The Music of Life-Biology beyond the Genome.Zhang LF,Lu HB.Trans.Beijing:Science Press,2010,64-75(in Chinese).
    65 Hunter PJ,Borg TK.Integration from proteins to organs:the Physiome Project.Nat Rev Mol Cell Biol 2003;4(3):237-243.
    66 Viceconti M,Clapworthy G,Van Sint Jan S.The Virtual Physiological Human-a European initiative for in silico human modelling.J Physiol Sci 2008;58(7):441-446.
    67 Crampin EJ,Halstead M,Hunter P,Nielsen P,Noble D,Smith N,Tawhai M.Computational physiology and the Physiome Project.Exp Physiol 2004;89(1):1-26.
    68 Hunter P,Nielsen P.A strategy for integrative computational physiology.Physiology(Bethesda)2005;20:316-325.
    69 Noble D.Claude Bernard,the first systems biologist,and the future of physiology.Exp Physiol 2008;93(1):16-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700