钦-杭带南段坡仔营斑岩型钼矿中黄铁矿微组构及其标型意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The microfabrics and significance of pyrite from the Pozaiying porphyry molybdenum deposits in southern section of Qinzhou-Hangzhou belt
  • 作者:安燕飞 ; 李兴远 ; 王语 ; 朱启宽 ; 刘丙祥 ; 张文媛 ; 郑刘根 ; Nenzhelele ; JDN
  • 英文作者:AN YanFei;LI XingYuan;WANG Yu;ZHU QiKuan;LIU BingXiang;ZHANG WenYuan;ZHENG LiuGen;Nenzhelele JDN;School of Resources and Environmental Engineering,Anhui University;Key Lab.of Geological Process and Mineral Resource Survey of Guangdong Province;School of Earth Sciences and Geological Engineering,Sun Yat-sen University;
  • 关键词:黄铁矿 ; 扫描电镜 ; X射线粉晶衍射 ; 拉曼光谱 ; 斑岩型钼矿 ; 钦杭结合带
  • 英文关键词:Pyrite;;SEM;;XRD;;Raman;;Porphyry molybdenum deposits;;Qinzhou-Hangzhou Belt
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:安徽大学资源与环境工程学院;广东省地质过程与矿产资源探查重点实验室;中山大学地球科学与地质工程学院;
  • 出版日期:2017-03-15
  • 出版单位:岩石学报
  • 年:2017
  • 期:v.33
  • 基金:国家自然科学基金项目(41602173);; 国家重点研发计划重点专项(2016YFC0600506);; 中国地质调查局矿产远景调查专项(12120113067600);; 安徽大学博士科研启动基金(J10113190091)联合资助
  • 语种:中文;
  • 页:YSXB201703005
  • 页数:10
  • CN:03
  • ISSN:11-1922/P
  • 分类号:65-74
摘要
坡仔营钼矿是钦-杭成矿带南段最重要斑岩型矿床之一。该矿床发育典型"中心式面型蚀变"和A、B和D三种类型矿化脉。为了加深对其成矿过程的认识,本研究选取不同矿脉中黄铁矿,通过扫描电镜(SEM)、X射线粉晶衍射(XRD)和激光拉曼光谱(Raman),研究其微组构标型特征,以期反演成矿过程的热力学及动力学信息。SEM结果显示,A脉内黄铁矿较少,呈100~200μm半自形-他形,籽晶呈扁平乳滴状;B脉黄铁矿强烈发育,呈500~1000μm自形-半自形,籽晶呈近椭圆形层状;D脉内黄铁矿呈立方体产出,粒度10~20mm左右,三组相互垂直晶纹发育,籽晶棱角状线形展布。A脉→B脉→D脉中黄铁矿粒度逐渐变大,籽晶更加规则,指示成矿早期至晚期,黄铁矿结晶速度逐渐变缓,成生环境趋于稳定。XRD结果展示,各样品谱线均发育着多组黄铁矿特征峰,但其强峰发育存在差异。A脉最强峰为28.5°,次强峰37.1°;B脉和D脉相应峰位分别为37.1°、33.1°和33.1°、56.3°。衍射峰型特征表明,A脉样品晶形应以(1 1 1)面组成的正八面体单形为主,其次为(2 1 0)晶面组成的五角十二面体,其成生温度应大于300度;B脉样品应以(2 1 0)组成的五角十二面体单形为主,其次为(1 0 0)晶面组成的立方体单形,形成温度应介于200~300℃之间或略大;D脉样品主要以(1 0 0)晶面组成的立方体为主,其形成温度应小于200℃。Raman光谱揭示,A脉样品的νEg=348.0~350.7cm~(-1)、νAg=385.2~386.5cm~(-1)、νTg=441.9~422.8cm~(-1),与之相比,B脉和D脉的对应值分别向低频偏移2~6cm~(-1)和5~14cm~(-1);A脉样品的散射强度IEg=388.8~745.5、IAg=1532.8~2071.8、ITg=238.9~254.4,而B及D脉样品的散射强度依次明显增强。自A脉→B脉→D脉,拉曼位移向低频偏移,散射强度依次增强,指示三者的成生压力依次降低。本研究认为,坡仔营斑岩型钼矿的成生早期为一个高温、高压岩浆热液活动为主阶段,随着成矿温度、压力的降低,成矿系统氧逸度逐渐降低,硫及金属元素逐步转变为金属硫化物形式而成矿。
        The Pozaiying deposit is one of most significant deposits in southwestern section of Qinzhou-Hangzhou Belt. The deposit is of the central planar alteration type and ore bodies are composed of three types' veins of A,B and D. In order to deepen the understanding of the mineralization process,some pyrite samples among ore veins from Pozaiying deposits were retrieved to characterize the signature of microfabrics with SEM,XRD and Raman spectral analysis for reshaping the metallogenic process of thermodynamics and kinetics. The results of SEM show three points as follows:(1) pyrite with droplets-shaped microcrystalline on crystal face among A vein is rare,hypautomorphic-xenomorphic,and about 100 ~ 200μm;( 2) pyrite with oval-layered microcrystalline on crystal face among B vein is common,euhedral-hypautomorphic,and about 500 ~ 1000μm;(3) pyrite with angular and linear microcrystalline on cubic crystal face among D vein is about 10 ~ 20 mm. Our analysis indicates that the size of pyrite particle increases and microcrystalline on crystal faces becomes more regular from A vein to B vein to D vein,which reveals that the crystallization rate of pyrite may be reduced and the crystallization environment tends to be stable from early to late period. The results of XRD shows an obvious difference that the main peak is 28. 5° and the secondary peak is 37. 1° in A vein,and respectively,are 37. 1° and 33. 1° in B vein,and are 33. 1° and 56. 3° D vein were detected,although the outline of the curves look similar between each sample of pyrite in different veins. All the above evidences indicate that pyrite in A vein may consist of an octahedron enclosed with( 1 1 1) crystal plane and pentagonal dodecahedron enclosed with(2 1 0) crystal plane,by which,we speculate at its formation temperatures should be higher than 300℃. Samples in B vein should be made up of pentagonal dodecahedron enclosed with(2 1 0) crystal plane and cubic enclosed with(1 1 1) crystal plane,and its formation temperatures should be between 200 ~ 300℃ or higher. Samples in D vein mainly consist of cubic enclosed with( 1 0 0) crystal plane and its formation temperatures should be less than 200℃. The Raman spectrμm reveals that all the parameter of samples in A vein νEg= 348. 0 ~ 350. 7cm~(-1),νAg= 385. 2 ~ 386. 5cm~(-1)and νTg= 441. 9 ~422. 8cm~(-1),compare with them,the corresponding value of B vein and D vein were shifting to low frequencies by 2 ~ 6cm~(-1)and 5 ~14cm~(-1); the scattering intensity of sample in A vein IEg= 388. 8 ~ 745. 5,IAg= 1532. 8 ~ 2071. 8 and ITg= 238. 9 ~ 254. 4,while the corresponding scattering intensity of B vein and D vein are enhanced significantly. Comparative analysis shows that the characteristics of Raman spectrum shift towards low-frequencies from A to B to D indicating that the growth pressure of the three types of pyrite decreases gradually and the scattering intensity increases from A to B to D also indicates that the formation temperatures between the three gradually decreases. Thus,our studies suggest that the formation temperature and pressure of the vein from early to late decrease in Pozaiying molybdenum deposit.
引文
An YF.2013.Study on geological characteristics and resource prospective of Hechun area in Qinzhou-Hangzhou Belt,South China.Ph.D.Dissertation.Guangzhou:Sun Yat-Sen University,34-37(in Chinese with English summary)
    An YF,Zhong LL and Jiang DP.2014.Micro-Raman spectral characteristics and implication of Fe S2from augen granites in west of Guangdong.Spectroscopy and Spectral Analysis,34(9):2439-2443(in Chinese with English abstract)
    An YF,Zheng LG,Sun QW,Jiang YL,Wang CJ,Wang RR and Niu K.2016.Micro-Raman spectral characteristics and implication of Fe S2from metamorphic belt between coal and intrusion in Wolonghu coal mine of Anhui Province,China.Spectroscopy and Spectral Analysis,36(4):986-990(in Chinese with English abstract)
    Batchelder J.1977.Light stable isotope and fluid inclusion study of the porphyry copper deposit at Copper Canyon,Nevada.Economic Geology,72(1):60-70
    Burnham CW.1979.Magmas and hydrothermal fluids.In:Barnes HL(ed.).Geochemistry of Hydrothermal Ore Deposits.3rd Edition.New York:Wiley and Sons,71-136
    Chen YJ and Zhang L.2008.Middle-stageδD-depletion in ore fluids of sulfide-bearing lode deposits:Examples and origin.Geochimica,37(4):353-360(in Chinese with English abstract)
    Chen YJ,Zhang C,Li N,Yang YF and Deng K.2012.Geology of the Mo deposits in Northeast China.Journal of Jilin University(Earth Science Edition),42(5):1223-1268(in Chinese with English abstract)
    Chu KL,Mao JW,Chen MH,Zhao J,Yu CF,Lin LZ and Lin XG.2013.Source of metallogenic materials and ore-forming fluids,and metallogenic mechanism of the Yuanzhuding porphyry Cu-Mo deposit,western Guangdong Province,South China.Earth Science Frontiers,20(5):115-125(in Chinese with English abstract)
    Cook DR,Hollings P and Walsh JL.2005.Giant porphyry deposits:Characteristics,distribution,and tectonic controls.Economic Geology,100(5):801-818
    Einaudi MT,Hedenquist JW and Inan EE.2003.Sulfidation state of fluids in active and extinct hydrothermal systems:Transitions from porphyry to epithermal environments.In:Simmons SF and Graham I(eds.).Volcanic,Geothermal,and Ore-Forming Fluids:Rulers and Witnesses of Processes within the Earth.Society of Economic Geologists Special Publication,10:285-313
    Ge WC,Wu FY,Zhou CY and Zhang JH.2007.Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt:Mineralization ages and their geodynamic implications.Chinese Science Bulletin,52(24):3416-3427
    Gustafson LB and Hunt JP.1975.The porphyry copper deposit at El Salvador,Chile.Economic Geology,70(5):857-912
    Hildreth W and Moorbath S.1988.Crustal contributions to arc magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology,98(4):455-489
    Hollister VF,Potter RR and Barker AL.1974.Porphyry-type deposits of the Appalachian orogen.Economic Geology,69(5):618-630
    Hou ZQ,Yang ZM,Qu XM,Meng XJ,Li ZQ,Beaudoin G,Rui ZY,Gao YF and Zaw K.2009.The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen.Ore Geology Reviews,36(1-3):25-51
    Hu RZ,Bi XW,Turner G and Burnard PG.1997.Helium and argon isotope systematics in pyrite fluid inclusions of Machangqing copper deposit.Science in China(Series D),27(6):503-508(in Chinese)
    Huang F,Kou DM,Yao YZ,Ni P and Ding JY.2009.Study on structure and phase transformation laws of natural Fe S2whisker by Raman spectroscopy.Spectroscopy and Spectral Analysis,29(8):2112-2116(in Chinese with English abstract)
    Ke YK and Dong HR.1998.Manual of Chemical Analysis(The Third Volume:Spectral Analysis).2nd Edition.Beijing:Chemical Industry Press,1120-1183(in Chinese)
    Kleppe AK and Jephcoat AP.2004.High-pressure Raman spectroscopic studies of Fe S2pyrite.Mineralogical Magazine,68(3):433-441
    Li BL,Zhi YB,Zhang L,Ding QF,Xu QL,Zhang YJ,Qian Y,Wang G,Peng B and Ao C.2015.U-Pb dating,geochemistry,and Sr-Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu-(Mo)deposit in the Eastern Kunlun metallogenic belt,Qinghai Province,China.Ore Geology Reviews,67:1-10
    Li SR,Xu H,Shen JF and Li GW.2008.Crystallography and Mineralogy.Beijing:Geological Publishing House,309-312(in Chinese)
    Liang J,Zhou YZ,Li HZ,Yin ZZ,Zhou LY,Zeng CY and Yu PP.2012.Geological characteristics and genesis of porphyry copper deposits in Qinzhou-Hangzhou suture zone,South China.Acta Petrologica Sinica,28(10):3361-3372(in Chinese with English abstract)
    Liao LB,Li GW,Cai YF and Huang JJ.2011.Application of powder X-ray diffraction in mineralogy and petrology.Physics,2007,36(6):460-464(in Chinese)
    Lowell JD and Guilbert JM.1970.Lateral and vertical alterationmineralization zoning in porphyry ore deposits.Economic Geology,65(4):373-408
    Mao JW,Cheng YB,Chen MH and Franco P.2013.Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings.Mineralium Deposita,48(3):267-294
    Nielsen RL.1968.Hypogene texture and mineral zoning in a copperbearing granodiorite porphyry stock,Santa Rita,New Mexico.Economic Geology,63(1):37-50
    Niu YL,Liu Y,Xue QQ,Shao FL,Chen S,Duan M,Guo PY,Gong HM,Hu Y,Hu ZX,Kong JJ,Li JY,Liu JJ,Sun P,Sun WL,Ye L,Xiao YY and Zhang Y.2015.Exotic origin of the Chinese continental shelf:New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic.Science Bulletin,60(18):1598-1616
    Norton D.1978.Sourcelines,sourceregions,and pathlines for fluids in hydrothermal systems related to cooling plutons.Economic Geology,73(1):21-28
    Pourghahramani P and Akhgar BN.2015.Characterization of structural changes of mechanically activated natural pyrite using XRD line profile analysis.International Journal of Mineral Processing,134:23-28
    Richards JP.2003.Tectono-magmatic precursors for porphyry Cu-(MoAu)deposit formation.Economic Geology,98(8):1515-1533
    Richards JP,Spell T,Rameh E,Razique A and Fletcher T.2014.High Sr/Y magmas reflect arc maturity,high magmatic water content,and porphyry Cu±Mo±Au potential:Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan.Economic Geology,107(2):295-332
    Rusk BG,Reed MH,Dilles JH,Klemm LM and Heinrich CA.2004.Compositions of magmatic hydrothermal fluids determined by La-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte,MT.Chemical Geology,210(1-4):173-199
    Rusk BG,Reed MH and Dilles JH.2008.Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry coppermolybdenum deposit at Butte,Montana.Economic Geology,103(2):307-334
    Schmkel MS,Bjerg L,Cenedese S,Jorgensen MRV,Chen YS,Overgaard J and Iversen BB.2014.Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of Fe S2:A combined experimental and theoretical electron density study.Chemical Science,5(4):1408-1421
    Sillitoe RH.1972.A plate tectonic model for the origin of porphyry copper deposits.Economic Geology,67(2):184-197
    Sillitoe RH.2014.Porphyry copper systems.Economic Geology,105(1):3-41
    Spencer ET,Wilkinson JJ,Creaser RA and Seguel J.2015.The distribution and timing of molybdenite mineralization at the El Teniente Cu-Mo porphyry deposit,Chile.Economic Geology,110(2):387-421
    Sun N,Huang M,Min Y,Chen L,Liu JT,Cao BB and Xiong YQ.2014.Characteristics of ore-forming fluid of the Baoxingchang CuMo-Au deposit,western Yunnan,China.Acta Petrologica Sinica,30(9):2644-2656(in Chinese with English abstract)
    Utyuzh AN.2014.Influence of temperature on Raman spectra of the Fe S2single crystal with pyrite structure.Physics of the Solid State,56(10):2050-2055
    Velásquez P,Leinen D and Pascual J.2005.A chemical,morphological,and electrochemical(XPS,SEM/EDX,CV,and EIS)analysis of electrochemically modified electrode surfaces of natural chalcopyrite(Cu Fe S2)and pyrite(Fe S2)in alkaline solutions.The Journal of Physical Chemistry B,109(11):4977-4988
    Wu C,Liu Y,Cao MJ,Hong T,Xu XW and Dong LH.2015.Characteristics and formation mechanism of reduced porphyry Cu and Mo-Cu deposits.Acta Petrologica Sinica,31(2):617-638(in Chinese with English abstract)
    Xie QQ,Chen TH,Fan ZL,Xu XC,Zhou YF,Shi WB and Xie JJ.2014.Morphological characteristics and genesis of colloform pyrite in Xinqiao Fe-S deposit,Tongling,Anhui Province.Scientia Sinica(Terrae),44(12):2665-2674(in Chinese)
    Xu DM,Lin ZY,Luo XQ,Zhang K,Zhang XH and Huang H.2015.Metallogenetic series of major metallic deposits in the QinzhouHangzhou metallogenic belt.Earth Science Frontiers,22(2):7-24(in Chinese with English abstract)
    Yan YT,Li SR,Jia BJ,Zhang N and Yan LN.2012.Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types.Earth Science Frontiers,19(4):214-226(in Chinese with English abstract)
    Yang MG and Mei YW.1997.Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture.Geology and Mineral Resources of South China,(3):52-59(in Chinese with English abstract)
    Yang YC,Han SJ,Sun DY,Guo J and Zhang SJ.2012.Geological and geochemical features and geochronology of porphyry molybdenum deposits in the Lesser Xing’an Range-Zhangguangcai Range metallogenic belt.Acta Petrologica Sinica,28(2):379-390(in Chinese with English abstract)
    Ye R,Tu GC,Ma ZS and Zhao LS.2005.The surface micromorphology of minerals in hydrothermal ore deposits and growth environments of crystal.Earth Science Frontiers,12(2):240-246(in Chinese with English abstract)
    Yu JS,Lei XR,Zhang JH and Wu HD.2011.Mineral X-ray Powder Identification Manual.Wuhan:Huazhong University of Science and Technology Press,1-756(in Chinese)
    Yuan F,Zhou TF,Wang SW,Fan Y,Tang C,Zhang QM,Yu CH and Shi C.2012.Characteristics of alteration and mineralization of the Shaxi porphyry copper deposit,Luzong area,Anhui Province.Acta Petrologica Sinica,28(10):3099-3112(in Chinese with English abstract)
    Zheng Y,Zhou YZ,Wang YJ,Shen WJ,Yang ZJ,Li X and Xiao F.2015.A fluid inclusion study of the Hetai goldfield in the Qinzhou Bay-Hangzhou Bay metallogenic belt,South China.Ore Geology Reviews,73:346-353
    Zhou YZ,Zeng CY,Li HZ,An YF,Liang J,LüWC,Yang ZJ,He JGand Shen WJ.2012.Geological evolution and ore-prospecting targets in southern segment of Qinzhou Bay-Hangzhou Bay juncture orogenic belt,southern China.Geological Bulletin of China,31(2-3):486-491(in Chinese with English abstract)
    Zhou YZ,Zheng Y,Zeng CY and Liang J.2015.On the understanding of Qinzhou Bay-Hangzhou Bay metallogenic belt,South China.Earth Science Frontiers,22(2):1-6(in Chinese with English abstract)
    安燕飞.2013.钦-杭成矿带(南段)粤西河唇地区成矿地质条件及矿产资源远景研究.博士学位论文.广州:中山大学,34-37
    安燕飞,钟莉莉,姜大朋.2014.粤西眼球状花岗岩Fe S2拉曼光谱特征及意义.光谱学与光谱分析,34(9):2439-2443
    安燕飞,郑刘根,孙倩文,姜亚琳,汪成结,王蓉蓉,牛坤.2016.皖北卧龙湖煤矿岩-煤蚀变带黄铁矿拉曼光谱特征及意义.光谱学与光谱分析,36(4):986-990
    陈衍景,张莉.2008.含硫化物脉状矿床成矿流体的中阶段δD亏损:实例与原因.地球化学,37(4):353-360
    陈衍景,张成,李诺,杨永飞,邓轲.2012.中国东北钼矿床地质.吉林大学学报(地球科学版),42(5):1223-1268
    楚克磊,毛景文,陈懋弘,赵军,余长发,林良庄,林秀广.2013.广东圆珠顶斑岩型铜钼矿床成矿物质、成矿流体来源和成矿机理研究.地学前缘,20(5):115-125
    葛文春,吴福元,周长勇,张吉衡.2007.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义.科学通报,52(20):2407-2417
    胡瑞忠,毕献武,Turner G,Burnard PG.1997.马厂箐铜矿床黄铁矿流体包裹体He-Ar同位素体系.中国科学(D辑),27(6):503-508
    黄菲,寇大明,姚玉增,倪培,丁俊英.2009.拉曼光谱研究天然Fe S2晶须结构及其相变规律.光谱学与光谱分析,29(8):2112-2116
    柯以侃,董慧茹.1998.分析化学手册(第三分册:光谱分析).第2版.北京:化学工业出版社,1120-1183
    李胜荣,许虹,申俊峰,李国武.2008.结晶学与矿物学.北京:地质出版社,309-312
    梁锦,周永章,李红中,尹缀缀,周留煜,曾长育,虞鹏鹏.2012.钦-杭结合带斑岩型铜矿的基本地质特征及成因分析.岩石学报,28(10):3361-3372
    廖立兵,李国武,蔡元峰,黄俊杰.2007.粉晶X射线衍射在矿物岩石学研究中的应用.物理,2007,36(6):460-464
    孙诺,黄明,闵毅,陈浪,刘江涛,曹宝宝,熊伊曲.2014.滇西宝兴厂斑岩铜钼金矿床成矿流体特征.岩石学报,30(9):2644-2656
    吴楚,刘妍,曹明坚,洪涛,徐兴旺,董连慧.2015.还原性斑岩型Cu与Mo-Cu矿特征与形成机制.岩石学报,31(2):617-638
    谢巧勤,陈天虎,范子良,徐晓春,周跃飞,石文兵,谢晶晶.2014.铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨.中国科学(地球科学),44(12):2665-2674
    徐德明,蔺志永,骆学全,张鲲,张雪辉,黄皓.2015.钦-杭成矿带主要金属矿床成矿系列.地学前缘,22(2):7-24
    严育通,李胜荣,贾宝剑,张娜,闫丽娜.2012.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析.地学前缘,19(4):214-226
    杨明桂,梅勇文.1997.钦-杭古板块结合带与成矿带的主要特征.华南地质与矿产,(3):52-59
    杨言辰,韩世炯,孙德有,郭嘉,张苏江.2012.小兴安岭-张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究.岩石学报,28(2):379-390
    叶荣,涂光炽,马喆生,赵伦山.2005.热液矿床矿物微形貌与晶体生长环境研究.地学前缘,12(2):240-246
    于吉顺,雷新荣,张锦化,吴红丹.2011.矿物X射线粉晶鉴定手册.武汉:华中科技大学出版社,1-756
    袁峰,周涛发,王世伟,范裕,汤诚,张千明,俞沧海,石诚.2012.安徽庐枞沙溪斑岩铜矿蚀变及矿化特征研究.岩石学报,28(10):3099-3112
    周永章,曾长育,李红中,安燕飞,梁锦,吕文超,杨志军,何俊国,沈文杰.2012.钦州湾-杭州湾构造结合带(南段)地质演化和找矿方向.地质通报,31(2-3):486-491
    周永章,郑义,曾长育,梁锦.2015.关于钦-杭成矿带的若干认识.地学前缘,22(2):1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700