不同种类浮游植物对CO_2浓度升高的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Response of Different Types of Phytoplankton to the Elevated CO_2 Concentration
  • 作者:马莎 ; 张继红 ; 刘毅 ; 吴文广 ; 孙科 ; 王巍 ; 隋娟娟 ; 赵云霞 ; 杨艳云
  • 英文作者:MA Sha;ZHANG Jihong;LIU Yi;WU Wenguang;SUN Ke;WANG Wei;SUI Juanjuan;ZHAO Yunxia;YANG Yanyun;College of Fishery and Life Sciences, Shanghai Ocean University;Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences;Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao);
  • 关键词:海水酸化 ; 浮游植物 ; 生长速率 ; 叶绿素荧光参数
  • 英文关键词:Ocean acidification;;Phytoplankton;;Growth rate;;Chlorophyll fluorescence parameters
  • 中文刊名:HYSC
  • 英文刊名:Progress in Fishery Sciences
  • 机构:上海海洋大学水产与生命学院;中国水产科学研究院黄海水产研究所;青岛海洋科学与技术试点国家试验室海洋渔业科学与食物产出过程功能实验室;
  • 出版日期:2018-01-26 16:30
  • 出版单位:渔业科学进展
  • 年:2019
  • 期:v.40
  • 基金:中国水产科学研究院基本科研业务费(2014A01YY01);; 青岛海洋科学与技术试点国家实验室鳌山科技创新计划项目(2016ASKJ02-3);; 国家自然科学基金(41276172)共同资助~~
  • 语种:中文;
  • 页:HYSC201901004
  • 页数:9
  • CN:01
  • ISSN:37-1466/S
  • 分类号:29-37
摘要
本研究采用实验生态学的方法,以金藻、硅藻、绿藻3个门中的4种常见饵料藻叉鞭金藻(Dicrateriasp.)、三角褐指藻(Phaeodactylumtricornutum)、小球藻(Chlorellavulgaris)和亚心形扁藻(Platymonas subcordiformis)为研究对象,分析比较不同浮游植物的细胞数量和质量对CO_2浓度升高引起的海水酸化的响应情况。结果显示,与对照组相比,(1)CO_2浓度升高显著提高了这4种藻的生长速率(P<0.05);其中,亚心形扁藻平均比生长速率最高,比对照组高出13.5%;小球藻次之,为5.9%;叉鞭金藻和三角褐指藻均为2.2%。(2) CO_2浓度升高使浮游植物细胞内的碳(C)含量增加、氮(N)含量降低,C/N提高;种间差异较大,其中,亚心形扁藻的C/N、C/P值、小球藻的C/P值和三角褐指藻的C/N值显著提高,叉鞭金藻不显著。(3)CO_2浓度升高使小球藻单位细胞叶绿素a含量显著提高,小球藻通过提高光合作用能力促进生长,而另外3种藻叶绿素a含量与对照组无显著差异;三角褐指藻最大光化学量子产量(Fv/Fm)在实验初期显著升高;叉鞭金藻非光化学淬灭(NPQ)显著降低,快速光曲线初始斜率(α)显著增加;三角褐指藻和亚心形扁藻潜在的最大光合作用能力(rETR_(max))显著升高(P<0.05),但CO_2浓度升高对4种藻的光化学淬灭(qP)均没有显著影响(P>0.05)。可见,亚心形扁藻、小球藻和三角褐指藻在高CO_2浓度下虽然生长速率加快,但营养质量降低。不同种类的浮游植物对CO_2浓度升高的响应不同,这种差异可能会使未来海洋浮游植物群落结构发生变化;浮游植物C/N、C/P值的改变可能通过食物链对次级生产者,诸如浮游动物、滤食性贝类等产生影响。
        Ocean acidification caused by the rising atmospheric CO_2 concentration has been paid attention worldwide, the response process and mechanism of marine phytoplankton to ocean acidification are still not very clear. In this paper, we studied four kinds of microalgae Chrysophyta: Dicrateria sp., Bacillariophyta: Phaeodactylum tricornutum, Chlorophyta: Chlorella vulgaris and Platymonas subcordiformis to assess the response of microalgae to CO_2-driven ocean acidification(the future level of the year 2300), and by the variation of quality and quantity of phytoplankton, to predict the potential influence of future global climate change on secondary consumers. The results indicated that compared with the control group, the average growth rates(μ) of the four kinds of microalgae were promoted by elevated CO_2 concentration(P<0.05); for the value of μ, P. subcordiformis was the highest, 13.5% higher than the control group, followed by C. vulgaris(μ=5.9%), and then Dicrateria sp. and P. tricornutum(μ=2.2%). High CO_2 concentration could increase carbon content and/or decrease nitrogen or phosphorus content, and then increase C/N or C/P ratio of phytoplankton. However, there were species different, both of the C/N, C/P ratio for P. subcordiformis were significantly increased(P<0.05), and C/P ratio of C. vulgaris and C/N ratio of P. tricornutum were significantly increased(P<0.05). The cellular chlorophyll a contents of C. vulgaris was increased significantly by elevated CO_2 concentration. However, there were decreasing trends of the others. The maximal efficiency of PSⅡ in a dark-adapted state(Fv/Fm) of P. tricornutum elevated remarkably in the beginning of the experiment, the initial slope of rapid light curves(α) of Dicrateria sp. improved, non-photochemical quenching(NPQ) decreased significantly, and the maximum relative electron transport rate(rETRmax) of P. tricornutum and P. subcordiformis increased significantly(P<0.05). But high CO_2 concentration has no remarkable effect on photochemical quenching(qP) of the four phytoplankton(P>0.05). Therefore, the growth rate of P. subcordiformis, C. vulgaris and P. tricornutum accelerated under the high CO_2 concentration, whereas nutrition quality declined. Different kinds of phytoplankton have different responses to ocean acidification, which may change oceanic phytoplankton community structure in the future. In addition, the change of C/N and C/P ratio of phytoplankton could influence the primary consumer, such as zooplankton and filtering shellfish, through the food chain.
引文
Caldeira K,Wickett ME.Oceanography:Anthropogenic carbon and ocean pH.Nature,2003,425(6956):365
    Chen L,Li CL.Research advances in ecological stoichiometry of marine plankton.Chinese Journal of Applied Ecology,2014,25(10):3047-3055[陈蕾,李超伦.海洋浮游生物的生态化学计量学研究进展.应用生态学报,2014,25(10):3047-3055]
    Chen ZQ,Shou L,Liao YB,et al.Advance in the effect of microalgal diets and nutritional value on the growth of early life stages of bivalves.Bulletin of Science and Technology,2013,29(7):46-55[陈自强,寿鹿,廖一波,等.微藻饵料对双壳贝类幼体生长影响的研究进展.科技通报,2013,29(7):46-55]
    Dlugokencky E,Tans P.NOAA/ESRL(www.esrl.noaa.gov/gmd/ccgg/trends/)
    Finkel ZV,Beardall J,Flynn KJ,et al.Phytoplankton in a changing world:Cell size and elemental stoichiometry.Journal of Plankton Research,2010,32(1):119-137
    Fu FX,Marke W,Zhang Y,et al.Effects of increased temperature and CO2 on photosynthesis,growth,and elemental ratios in marine Synechococcus and Prochlorococcus(Cyanobacteria).Journal of Phycology,2007,43(3):485-496
    Gao KS.Positive and negative effects of ocean acidification:Physiological responses of algae.Journal of Xiamen University(Natural Science),2011,50(2):411-417[高坤山.海洋酸化正负效应:藻类的生理学响应.厦门大学学报(自然科学版),2011,50(2):411-417]
    Gao KS.Algal carbon fixation-basis,advances and methods.Beijing:Science Press,2014[高坤山.藻类固碳-理论,进展与方法.北京:科学出版社,2014]
    He XJ,Zhang JG,Shi C,et al.Growth and ingestion of Pseudodiaptomus annandalei under different nitrogen conditions.Oceanologia et Limnologia Sinica,2012,43(3):609-614[何学佳,张君纲,石琛,等.不同氮条件下安氏伪镖水蚤(Pseudodiaptomus annandalei)的生长及摄食.海洋与湖沼,2012,43(3):609-614]
    Hong H,Shen R,Zhang F,et al.The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.Science,2017,356(6337):527-531
    Jiang H,Wu B,Yan B,et al.Application of microalgae chlorophyll fluorescence technique in environment monitoring.Journal of Environmental Engineering Technology,2012,2(2):172-178[姜恒,吴斌,阎冰,等.微藻叶绿素荧光技术在环境监测中的应用.环境工程技术学报,2012,2(2):172-178]
    Laspoumaderes C,Modenutti B,Balseiro E.Herbivory versus omnivory:Linking homeostasis and elemental imbalance in copepod development.Journal of Plankton Research,2010,32(32):1573-1582
    Liang Y,Feng LX,Yin CL,et al.Current status and prospect of chlorophyll fluorescence technique in the study of responses of microalgae to environmental stress.Marine Sciences,2007,31(1):71-76[梁英,冯力霞,尹翠玲,等.叶绿素荧光技术在微藻环境胁迫研究中的应用现状及前景.海洋科学,2007,31(1):71-76]
    Ma Y,Jiao NZ.Advances in molecular ecology of Synechococcus.Progress in Natural Science,2004,14(9):967-972[马英,焦念志.聚球藻(Synechococcus)分子生态学研究进展.自然科学进展,2004,14(9):967-972]
    Mao XW,Liu GX,Wang WM,et al.Effects of elevated CO2 on the population growth of Phaeodactylum tricornutum and Chaetoceros curvisetus.Periodical of Ocean University of China(Natural Science),2016,46(3):60-66[毛雪微,刘光兴,王为民,等.CO2浓度升高对三角褐指藻和旋链角毛藻种群生长的影响.中国海洋大学学报(自然科学版),2016,46(3):60-66]
    Redfield AC.On the proportions of organic derivatives in sea water and their relation to the composition of plankton.James Johnstone Memorial Volume.1934:177-192
    Riebesell U,Schulz KG,Bellerby RG,et al.Enhanced biological carbon consumption in a high CO2 ocean.Nature,2007,450(7169):545-548
    Rossoll D,Bermúdez R,Hauss H,et al.Ocean acidificationinduced food quality deterioration constrains trophic transfer.PLoS One,2012,7(4):e34737
    Schoo KL,Malzahn AM,Krause E,et al.Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore.Marine Biology,2013,160(8):2145-2155
    Shi C,LüSH,He XJ.Effect of phosphorus condition on growth and ingestion in Pseudodiaptomus annandalei.Acta Hydrobiologica Sinica,2011,35(3):460-466[石琛,吕颂辉,何学佳.不同磷条件对安氏伪镖水蚤(Pseudodiaptomus annandalei)的生长及摄食的影响.水生生物学报,2011,35(3):460-466]
    Sterner RW,Elser JJ.Ecological stoichiometry:The biology of elements from molecules to the biosphere.Princeton,NJ:Princeton University Press,2002
    Stocker TF,Qin D,Plattner GK,et al.IPCC,2013:Climate Change 2013:The physical science basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Computational Geometry,2013,18(2):95-123
    Urabe J,Togari J,Elser JJ.Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore.Global Change Biology,2003,9(6):818-825
    Wang D.Inter-and intra-specific responses of coccolithophores to CO2-induced ocean acidification and preliminary study on photoprotection mechanisms.Master’s Thesis of Qingdao Agricultural University,2015[王东升.海洋酸化条件下颗石藻种内及种间的特异性生理响应及其NPQ机制的初步探究.青岛农业大学硕士研究生学位论文,2015]
    Wu Y,Gao K,Riebesell U.CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum.Biogeosciences Discussions,2010,7(9):2915-2923
    Xu JT,Pang M,Ma X,et al.Carbon dioxide enrichment affects chlorophyll fluorescence and toxin production of Alexandrium tamarense.Oceanologia et Limnologia Sinica,2016,47(3):557-563[徐金涛,庞敏,马新,等.CO2加富对塔玛亚历山大藻叶绿素荧光参数及产毒的影响.海洋与湖沼,2016,47(3):557-563]
    Zang ZR,Xie XJ,Zhao PP,et al.Effect of different temperatures and light conditions on the growth and fucoxanthin content of Phaeodactylum tricornutum.Marine Sciences,2015,39(7):1-6[臧正蓉,解修俊,赵佩佩,等.温度和光照对三角褐指藻的生长及岩藻黄素含量的影响.海洋科学,2015,39(7):1-6]
    Zhou Y,Zhang FS,Yang HS,et al.Comparison of effectiveness of different ashing auxiliaries for determination of phosphorus in natural waters,aquatic organisms and sediments by ignition method.Water Research,2003,37(16):3875-3882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700