基于Copula函数的茶园土壤铜锌空间协同效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Spatial Synergistic Effect of Copper and Zinc in Tea Garden Soil Based on Copula Function
  • 作者:董立宽 ; 方斌 ; 王晨歌
  • 英文作者:DONG Li-kuan;FANG Bin;WANG Chen-ge;Research Center of New Urbanization and Land Problem, Nanjing Normal University;College of Geography,Nanjing Normal University;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application;Jiangsu Key Laboratory for Material Cycle and Pollution Control;
  • 关键词:土壤铜锌 ; 协同关系 ; Copula函数 ; 标准差椭圆模型 ; 空间效应
  • 英文关键词:soil Cu and Zn;;synergistic relationship;;Copula function;;Standard Deviation Ellipse Model;;spatial effect
  • 中文刊名:ZRZX
  • 英文刊名:Journal of Natural Resources
  • 机构:南京师范大学新型城镇化与土地问题研究中心;南京师范大学地理科学学院;江苏省地理信息资源开发与利用协同创新中心;江苏省物质循环与污染控制重点实验室;
  • 出版日期:2018-05-28
  • 出版单位:自然资源学报
  • 年:2018
  • 期:v.33
  • 基金:国家自然科学基金项目(41271189,41671174);; 江苏高校优势学科建设工程资助项目(164320H101)~~
  • 语种:中文;
  • 页:ZRZX201805012
  • 页数:12
  • CN:05
  • ISSN:11-1912/N
  • 分类号:149-160
摘要
揭示茶园土壤Cu、Zn空间协同效应对有效预防和治理土壤Cu、Zn污染,保障茶叶品质具有十分重要的作用。论文以江浙两地典型茶叶种植区为研究区,运用Copula函数对土壤Cu、Zn含量协同关系进行模拟、Kriging/IDW插值法进行空间估计、标准差椭圆模型进行空间效应分析。结果表明:1)研究区茶园土壤Cu、Zn含量二元频率直方图呈"J"型,具有上尾相关、下尾渐近独立的特征,其上尾相关系数λup及Kendall、Spearman秩相关系数分别为0.345 4、0.273 5、0.396 0,表明二者具有显著的正向相关性,建议加强土壤Cu、Zn含量监测,提升预警,避免复合污染;2)土壤Cu、Zn含量整体水平协同程度较高,局部因不同主导因子影响协同程度较低,应强化土壤Cu、Zn污染全域协同治理及局地因情施策的效果;3)Copula函数、Kriging/IDW估计以及标准差椭圆模型测算结果能相互印证,3种方法结合可更全面客观地反映两者的空间协同效应,为土壤Cu、Zn污染防治提供参考依据。
        It is very important to reveal the spatial synergistic effects of Cu and Zn in tea garden soil in effectively preventing and controlling soil Cu and Zn pollution and ensuring the quality of tea. Taking the typical tea plantations in Jiangsu and Zhejiang provinces as the study areas,this paper simulated the synergistic relationship between Cu and Zn content in the soil with Copula function, estimated the spatial regionalized variables of Cu and Zn in soil with Kriging/IDW interpolation method, and analyzed the spatial synergistic effects with Standard Deviation Ellipse Model. The results showed that: 1) The frequency histogram of the soil Cu and Zn content in the study area showed a"J"type distribution, which indicated that the upper tail is correlated while the lower tail is asymptotically independent; the upper tail correlation coefficient, the Kendall rank correlation coefficient, and the Spearman rank correlation coefficient between the soil Cu and Zn content were 0.345 4, 0.273 5, and 0.396 0, respectively;there is a positive correlation between the Cu and Zn content in soil, so it is recommended to strengthen the soil Cu and Zn content monitoring and improve early warning to avoid combined pollution. 2) As a whole, the correlation between soil Cu and Zn content was higher,but in some local areas it was lower due to the different dominant factors, for example, the soil Cu content in the west of Longjing was mainly affected by the thickness of tillage layer, while the soil Zn content showed a significant negative correlation with soil Se content at the 1%level, and their correlation coefficient was-0.288. Therefore, it could be considered to deal with the pollution of soil Cu and Zn together in the global areas and combine with the actual situation when dealing with the pollution of soil Cu and Zn in the local areas. 3) Copula function, combined with Kriging/IDW estimation and Standard Deviation Ellipse Model, can reflect the synergetic relationship between the content of soil Cu and Zn more truly and effectively and provide reference basis for the determination of Cu and Zn.
引文
[1]方斌,叶子君.江浙典型茶园土壤铜含量的空间分异对比分析[J].地理研究,2016,35(3):525-533.[FANG B,YE Z J.Comparative analysis on spatial variation of copper in typical tea garden soils of Jiangsu and Zhejiang provinces.Geographical Research,2016,35(3):525-533.]
    [2]朱晓东,韦朝阳,杨芬.包头—白云鄂博地区重金属基线值的厘定及其在重金属污染分级评价中的应用[J].自然资源学报,2016,31(2):310-320.[ZHU X D,WEI C Y,YANG F.Determination of heavy metal baseline in Baotou and Bayan Obo and its application in the assessment of heavy metal contamination.Journal of Natural Resources,2016,31(2):310-320.]
    [3]董立宽,方斌.茶园土壤重金属乡镇尺度下空间异质性分析——以江浙优质名茶种植园为例[J].地理研究,2017,36(2):391-404.[DONG L K,FANG B.Analysis of spatial heterogeneity of soil heavy metals in tea plantation:Case study of high quality tea garden in Jiangsu and Zhejiang.Geographical Research,2017,36(2):391-404.]
    [4]张智,任意,鲁剑巍,等.长江中游农田土壤微量养分空间分布特征[J].土壤学报,2016,53(6):1489-1496.[ZHANG Z,REN Y,LU J W,et al.Spatial distribution of micronutrients in farmland soils in the mid-reaches of the Yangtze River.Acta Pedologica Sinica,2016,53(6):1489-1496.]
    [5]王慧,曾路生,孙永红,等.重金属铜和锌胁迫下的小麦冠层反射光谱特征[J].农业工程学报,2017,33(2):171-176.[WANG H,ZENG L S,SUN Y H,et al.Wheat canopy spectral reflectance feature response to heavy metal copper and zinc stress.Transactions of the CSAE,2017,33(2):171-176.]
    [6]陈小敏,朱保虎,杨文,等.密云水库上游金矿区土壤重金属空间分布、来源及污染评价[J].环境化学,2015,34(12):2248-2256.[CHEN X M,ZHU B H,YANG W,et al.Sources,spatial distribution and contamination assessments of heavy metals in gold mine area soils of Miyun Reservoir upstream.Environmental Chemistry,2015,34(12):2248-2256.]
    [7]张文博.基于GIS的渭河流域西咸段土壤重金属空间分析与污染评价[D].西安:陕西师范大学,2014.[ZHANG W B.Spatial Analysis and Pollution Assessment of Heavy Metals in the West Section of Weihe River Basin Based on GIS.Xi’an:Shaanxi Normal University,2014.]
    [8]李春芳,王菲,曹文涛,等.龙口市污水灌溉区农田重金属来源、空间分布及污染评价[J].环境科学,2017,38(3):1018-1027.[LI C F,WANG F,CAO W T,et al.Source analysis,spatial distribution and pollution assessment of heavy metals in sewage irrigation area farmland soils of Longkou City.Environmental Science,2017,38(3):1018-1027.]
    [9]邓林,李柱,吴龙华,等.水分及干燥过程对土壤重金属有效性的影响[J].土壤,2014,46(6):1045-1051.[DENG L,LI Z,WU L H,et al.Influence of moisture and drying process on soil heavy metal availability.Soils,2014,46(6):1045-1051.]
    [10]倪丹华.模拟酸雨对施用猪粪的菜园土壤重金属有效性及蔬菜体内积累的影响[D].杭州:浙江大学,2007.[NI D H.Effects of Simulated Acid Rain on the Availability of Heavy Metals in Vegetable Garden Soils and the Accumulation in Vegetables.Hangzhou:Zhejiang University,2007.]
    [11]梁佩筠,许超,吴启堂,等.淹水条件下控释氮肥对污染红壤中重金属有效性的影响[J].生态学报,2013,33(9):2919-2929.[LIANG P J,XU C,WU Q T,et al.Effect of different controlled-release nitrogen fertilizers on availability of heavy metals in contaminated red soils under waterlogged conditions.Acta Ecologica Sinica,2013,33(9):2919-2929.]
    [12]程芳,程金平,桑恒春,等.大金山岛土壤重金属污染评价及相关性分析[J].环境科学,2013,34(3):1062-1066.[CHENG F,CHENG J P,SANG H C,et al.Assessment and correlation analysis of heavy metals pollution in soil of Dajinshan Island.Environmental Science,2013,34(3):1062-1066.]
    [13]赵珊珊,王勇辉.夏尔希里地区土壤磁化率、重金属特征及相关性分析[J].土壤,2016,48(6):1179-1187.[ZHAO S S,WANG Y H.The soil magnetic susceptibility,heavy metal characteristics and correlation analysis in the Xia’erxili.Soils,2016,48(6):1179-1187.]
    [14]朱本占,范瑞梅,盛治国.有机农药和含铜、锌等无机农药协同毒性作用机理[J].科学通报,2011,56(25):2111-2118.[ZHU B Z,FAN R M,SHENG Z G.Mechanism of synergistic toxicity between organic pesticides and copper/zinc-containing inorganic pesticides.Chinese Science Bulletin,2011,56(25):2111-2118.]
    [15]WU J,MO L Y,QIN L T,et al.Research advancement of the joint toxicity of heavy metals mixture[J].Applied Mechanics&Materials,2014,522/523/524:532-536.
    [16]陈宇锋.Cu2+或Zn2+及Cu2+与Zn2+交互胁迫对拟穴青蟹(Scylla paramamosain)生理生化的影响[D].厦门:厦门大学,2008.[CHEN Y F.Cu2+or Zn2+and Cu2+Interact with Zn2+Stress on Mud Crab(Scylla paramamosain)on the Physiological.Xiamen:Xiamen University,2008.]
    [17]韩桂琪,王彬,徐卫红,等.重金属Cd、Zn、Cu和Pb复合污染对土壤生物活性的影响[J].中国生态农业学报,2012,20(9):1236-1242.[HAN G Q,WANG B,XU W H,et al.Effects of heavy metal compound contamination of Cd,Zn,Cu and Pb on soil biological activity.Chinese Journal of Eco-Agriculture,2012,20(9):1236-1242.]
    [18]季轶群,王子芳,高明,等.重金属Cu、Zn、Pb复合污染对紫色土壤酶活性的影响[J].中国农学通报,2010,26(6):293-296.[JI Y Q,WANG Z F,GAO M,et al.Effects of Cu,Zn and Pb compound pollution of heavy metals on purple soil enzyme activities.Chinese Agricultural Science Bulletin,2010,26(6):293-296.]
    [19]FENG D,TENG Y G,WANG J S,et al.The combined effect of Cu,Zn and Pb on enzyme activities in soil from the vicinity of a wellhead protection area[J].Soil&Sediment Contamination,2016,25(3):279-295.
    [20]李润林,姚艳敏,唐鹏钦,等.县域耕地土壤锌含量的协同克里格插值及采样数量优化[J].土壤通报,2013,44(4):830-838.[LI R L,YAO Y M,TANG P Q,et al.Optimization of spatial interpolation and sampling size for soil zinc content in cultivated land at county scale using cokriging method.Chinese Journal of Soil Science,2013,44(4):830-838.]
    [21]方晰,唐志娟,田大伦,等.长沙城市森林土壤7种重金属含量特征及其潜在生态风险[J].生态学报,2012,32(23):7595-7606.[FANG X,TANG Z J,TIAN D L,et al.Distribution and ecological risk assessment of 7 heavy metals in urban forest soils in Changsha City.Acta Ecologica Sinica,2012,32(23):7595-7606.]
    [22]董立宽,方斌,施龙博,等.茶园土壤速效磷乡镇尺度下空间异质性对比分析——以江浙地区优质名茶种植区为例[J].长江流域资源与环境,2016,25(10):1576-1584.[DONG L K,FANG B,SHI L B,et al.Comparative analysis of spatial heterogeneity of soil available phosphorus at the township scale—Taking the high-quality tea planting area in Jiangsu and Zhejiang as examples.Resources and Environment in the Yangtze Basin,2016,25(10):1576-1584.]
    [23]刘国顺,常栋,叶协锋,等.基于GIS的缓坡烟田土壤养分空间变异研究[J].生态学报,2013,33(8):2586-2595.[LIU G S,CHANG D,YE X F,et al.Spatial variability characteristics of soil nutrients in tobacco fields of gentle slope based on GIS.Acta Ecologica Sinica,2013,33(8):2586-2595.]
    [24]方斌,董立宽,阚博颖.江浙典型茶园地理特征指标空间测度[M].北京:科学出版社,2017.[FANG B,DONG L K,KAN B Y.Spatial Measurement of Geographical Features of Typical Tea Gardens in Jiangsu and Zhejiang Provinces.Beijing:Science Press,2017.]
    [25]刘爱利,王培法,丁园圆,等.地统计学概论[M].北京:科学出版社,2012.[LIU A L,WANG P F,DING Y Y,et al.Introduction to Geostatistics.Beijing:Science Press,2012.]
    [26]SHI W J,LIU J Y,DU Z P,et al.Development of a surface modeling method for mapping soil properties[J].Journal of Geographical Sciences,2012,22(4):752-760.
    [27]LI J,HEAP A D.A review of comparative studies of spatial interpolation methods in environmental sciences:Performance and impact factors[J].Ecological Informatics,2011,6(3/4):228-241.
    [28]汪万芬,蒋锦刚.DEM辅助的土壤速效钾及速效磷空间分异研究:以行埠河流域为例[J].扬州大学学报(农业与生命科学版),2014,35(1):81-85.[WANG W F,JIANG J G.DEM-based spatial variability of soil available potassium and phosphorus:A case study in Hangbeng River watershed.Journal of Yangzhou University(Agricultural and Life Science Edition),2014,35(1):81-85.]
    [29]郭春香,梁音,曹龙熹.基于四种分辨率DEM的侵蚀模型地形因子差异分析[J].土壤学报,2014,51(3):482-489.[GUO C X,LIANG Y,CAO L X.Geomorphic factors in DEM-based soil erosion models as affected by resolution.Acta Pedologica Sinica,2014,51(3):482-489.]
    [30]SKLAR A.Fonctions de répartitionàn dimensions et leurs marges[R].Paris:Publications de l’Institut de Statistique de L’Universitéde Paris,1959:229-231.
    [31]谢中华.MATLAB统计分析与应用:40个案例分析[M].北京:北京航空航天大学出版社,2010.[XIE Z H.Statistical Analysis and Application of MATLAB:A Case Study of 40 Cases.Beijing:Beihang University Press,2010.]
    [32]郭爱军,黄强,畅建霞,等.基于Copula函数的泾河流域水沙关系演变特征分析[J].自然资源学报,2015,30(4):673-683.[GUO A J,HUANG Q,CHANG J X,et al.Variation of relationship between runoff and sediment based on Copula Function in the Jinghe River Basin.Journal of Natural Resources,2015,30(4):673-683.]
    [33]NELSEN R B.Methods of constructing Copulas[M]//NELSEN R B.An Introduction to Copulas.Springer,New York,1999:45-87.
    [34]LEFEVER D W.Measuring geographic concentration by means of the standard deviational ellipse[J].American Journal of Sociology,1926,32(1):88-94.
    [35]龙剑,朱海宁,曹邦宇.基于标准差椭圆模型的贵州省经济密度空间差异分析[J].当代经济,2014(13):114-117.[LONG J,ZHU H N,CAO B Y.Analysis on the spatial difference of economic density in Guizhou Province based on Standard Deviation Ellipse Model.Contemporary Economics,2014(13):114-117.]
    [36]郭旭东,傅伯杰,陈利顶,等.河北省遵化平原土壤养分的时空变异特征:变异函数与Kriging插值分析[J].地理学报,2000,55(5):555-566.[GUO X D,FU B J,CHEN L D,et al.The spatiotemporal variability of soil nutrients in Zunhua Plain of Hebei Province:Semivariogram and Kriging analysis.Acta Geographica Sinica,2000,55(5):555-566.]
    [37]徐云鹤,方斌.江浙典型茶园土壤有机质空间异质性分析[J].地球信息科学学报,2015,17(5):622-630.[XU Y H,FANG B.Study on spatial heterogeneity of the soil organic matter in typical tea gardens of Jiangsu Province and Zhejiang Province.Journal of Geo-Information Science,2015,17(5):622-630.]
    [38]李社新,李占斌,张晓霞.陕北黄土高原小流域土壤有效铜分布特征[J].水土保持通报,2011,31(1):114-116.[LI S X,LI Z B,ZHANG X X.Distribution characteristics of soil available copper in a small watershed of North Shaanxi Loess Plateau.Bulletin of Soil and Water Conservation,2011,31(1):114-116.]
    [39]钟晓兰,周生路,李江涛,等.长江三角洲地区土壤重金属污染的空间变异特征——以江苏省太仓市为例[J].土壤学报,2007,44(1):35-42.[ZHONG X L,ZHOU S L,LI J T,et al.Spatial variability of soil heavy metals contamination in the Yangtze River Delta—A case study of Taicang City in Jiangsu Province.Acta Pedologica Sinica,2007,44(1):35-42.]
    [40]吴永刚,姜志林,罗强.公路边茶园土壤与茶树中重金属的积累与分布[J].南京林业大学学报(自然科学版),2002,26(4):39-42.[WU Y G,JIANG Z L,LUO Q.The accumulation and distribution of heavy metals in teas on both sides of highway.Journal of Nanjing Forestry University(Natural Sciences Edition),2002,26(4):39-42.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700