用户名: 密码: 验证码:
长骨骨干骨折复位机器人研究现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of relative researches on long-bone shaft fracture reduction robot
  • 作者:史刚 ; 张肖在 ; 祁富贵 ; 王鹏飞 ; 张自启 ; 殷悦 ; 李雪阳 ; 焦腾
  • 英文作者:SHI Gang;ZHANG Xiao-zai;QI Fu-gui;WANG Peng-fei;ZHANG Zi-qi;YIN Yue;LI Xue-yang;JIAO Teng;School of Biomedical Engineering, the Fourth Military Medical University;Department of Medical Engineering, the 942nd Hospital of Joint Logistics Support Force;Department of Orthopedics and Trauma, the First Affiliated Hospital of the Fourth Military Medical University;
  • 关键词:长骨骨折 ; 复位机器人 ; 骨折复位治疗 ; 计算机辅助骨科手术 ; 创伤骨科
  • 英文关键词:long bone fracture;;reduction robot;;fracture reduction;;computer-assisted orthopedics surgery;;department of orthopedics and trauma
  • 中文刊名:YNWS
  • 英文刊名:Chinese Medical Equipment Journal
  • 机构:空军军医大学军事生物医学工程学系;联勤保障部队第942医院医学工程科;空军军医大学第一附属医院创伤骨科;
  • 出版日期:2019-01-15
  • 出版单位:医疗卫生装备
  • 年:2019
  • 期:v.40;No.295
  • 基金:后勤科研重点项目(BWS14044)
  • 语种:中文;
  • 页:YNWS201901022
  • 页数:7
  • CN:01
  • ISSN:12-1053/R
  • 分类号:99-105
摘要
介绍了长骨骨干骨折复位治疗方法的发展及存在的不足,按照复位装置的结构特点分别从基于Stewart平台以及其演变结构的并联式复位机器人系统、基于工业机器人的串联式复位机器人系统和自主设计结构及控制方式的复位机器人系统3个方面阐述了国内外长骨骨干骨折复位机器人相关技术发展和实验进展情况,分析了长骨骨干骨折复位机器人的复位执行结构模型和相关图像处理及导航技术的新进展,指出了长骨骨干骨折复位机器人未来可向发展多模态示踪导航系统、设计更加科学的复位结构模型、控制单元与执行单元分开、改变供电模式、实现多种工作模式、进行模块化设计几个方向发展。
        The development and shortcomings of the reduction treatment of long bone fractures were introduced. According to the structural characteristics of the reduction device, the parallel reset robot system based on Stewart platform and its evolution structure, the serial reset robot system based on industrial robots and the independent design structure were described. The new progresses of the reset execution structure model and related image processing and navigation technology were analyzed, and the future development directions were tentatively explored including multimodal tracing and navigation system, complicated reduction structural model, separated control and execution units, optimized power supply mode, multi working mode, modular design and etc.
引文
[1]刘晓平.骨折治疗从AO到BO的演变[J].医学与哲学(临床决策论坛版),2006,27(11):21-22.
    [2]王亦璁. BO与AO的不同之处[J].中国骨与关节损伤杂志,2002,17(1):3-5.
    [3]王亦璁.骨折治疗从AO到BO的进展[J].中国医师杂志,1999(11):10-11.
    [4]郭树章.四肢长骨骨折内固定方式选择策略与研究进展[J].医学信息,2018(1):1-3.
    [5] SUGARMAN I D,ADAM I,BUNKER T D. Radiation dosage during AO locking femoral nailing[J]. Injury,1988,19(5):336-338.
    [6] GROVER J,WISS D A. A prospective study of fractures of the femoral shaft treated with a static,intramedullary,interlocking nail comparing one versus two distal screws[J]. Orthop Clin North Am,1995,26(1):139-146.
    [7] WESTPHAL R,WINKELBACH S,WAHL F,et al. Robotassisted long bone fracture reduction[J]. Int J Robot Res,2009,28(10):1 259-1 278.
    [8] GOSLING T,WESTPHAL R,FAULSTICH J,et al. Forces and torques during fracture reduction:intraoperative measurements in the femur[J]. J Orthop Res,2010,24(3):333-338.
    [9]孙小刚.股骨干骨折复位辅助机器人系统研制[D].南京:东南大学,2016.
    [10]王田苗,刘文勇,胡磊.医用机器人与计算机辅助手术MRCAS进展[J].中国生物医学工程学报,2008(1):137-146.
    [11] FUECHTMEIER B,EGERSDOERFER S,TUMA G,et al.Development of a robotic navigation and fracture fixation system[J]. Stud Health Technol Inform,2003,97:43.
    [12] SUN T S,CHEN X B,LIU Z,et al. Is damage control orthopedics essential for the management of bilateral femoral fractures associated or complicated with shock?An animal study[J].J Trauma,2009,67(6):1 402-1 411.
    [13]阮志勇,TOBIAS H,罗从风,等.机器人辅助股骨干骨折复位[J].中国组织工程研究与临床康复,2010,14(13):2 292-2 294.
    [14] STEWART D. A platform with six degree of freedom[J]. Proc Instn Mech Engrs,1965,180(15):371-386.
    [15] SEIDE K,WOLNACK J,WEINRICH N,et al. Theory and software of the hexapod external fixator[J]. Biomed Tech,2002,47(12):326-333.
    [16] WHALLEY R,EBRAHIMI M,ABDUL-AMEER A. Highspeed rotor-shaft systems and whirling identification[J]. P I Mech Eng C-J Mec,2007,221(6):661-676.
    [17] FADEL M,HOSNY G. The Taylor spatial frame for deformity correction in the lower limbs[J]. Int Orthop,2005,29(2):125.
    [18] ROZBRUCH S R,PUGSLEY J S,FRAGOMEN A T,et al.Repair of tibialnonunions and bone defects with the Taylor Spatial Frame[J]. J Orthop Trauma,2008,22(2):88-95.
    [19] NAKASE T,KITANO M,KAWAI H,et al. Distraction osteogenesis for correction of three-dimensional deformities with shortening of lower limbs by Taylor Spatial Frame[J]. Arch Orthop Trauma Surg,2009,129(9):1 197-1 201.
    [20] NAKASE T,OHZONO K,SHIMIZU N,et al. Correction of severe post-traumatic deformities in the distal femur by distraction osteogenesis using Taylor Spatial Frame:a case report[J]. Arch Orthop Trauma Surg,2006,126(1):66-69.
    [21] VISKONTAS D G,MACLEOD M D,SANDERS D W. High tibial osteotomy with use of the Taylor Spatial Frame external fixator for osteoarthritis of the knee[J]. Can J Surg,2006,49(4):245-250.
    [22] BROWBANK I,BOUAZZA-MAROUF K,SCHNABLER J.Robotic-assisted internal fixation of hip fractures:a fluoroscopy-based intraoperative registration technique[J]. Proc Inst Mech Eng H,2000,214(2):165-179.
    [23] BOUAZZA-MAROUF K,BROWBANK I,HEWIT J R. Robotic-assisted internal fixation of femoral fractures[J]. Proc Inst Mech Eng H,1995,209(1):51-58.
    [24] SEIDE K,FASCHINGBAUER M,WENZL M E,et al. A hexapod robot external fixator for computer assisted fracture reduction and deformity correction[J]. Int J Med Robot,2004,1(1):64-69.
    [25] JOSKOWICZ L,MILGROM C,SHOHAM M,et al. A robotassisted system for long bone intramedullary distal locking:concept and preliminary results[J]. International Congress Series,2003,1 256(3):485-491.
    [26] SHOHAM M,BUAMAN M,ZEHAVI E,et al. Bone-mounted miniature robot for surgical procedures:concept and clinical applications[J]. IEEE Trans Robot Autom,2003,19(5):893-901.
    [27] HAZAN E J,JOSKOWICZ L. Computer-assisted imageguided intramedullary nailing of femoral shaft fractures[J]. Techniques in Orthopaedics,2003,18(2):191-200.
    [28] DU H L,HU L,LI C S,et al. Advancing computer-assisted orthopaedic surgery using a hexapod device for closed diaphyseal fracture reduction[J]. Int J Med Robot,2015,11(3):348-359.
    [29] TANG P F,HU L,DU H L,et al. Novel 3D hexapod computerassisted orthopaedic surgery system for closed diaphyseal fracture reduction[J]. Int J Med Robot,2012,8(1):17-24.
    [30] LI C S,WANG T M,HU L,et al. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction[J]. Proc Inst Mech Eng H,2015,229(9):629-637.
    [31] LI C S,WANG T M,HU L,et al. Robot-musculoskeletal dynamic biomechanical model in robot-assisted diaphyseal fracture reduction[J]. Biomed Mater Eng,2015,26(Suppl1):365-374.
    [32] LUAN S,SUN L,HU L,et al. Projective invariant biplanar registration of a compact modular orthopaedic robot[J]. Biomed Mater Eng,2014,24(1):511-518.
    [33] WANG T M,LI C S,HU L,et al. A removable hybrid robot system for long bone fracture reduction[J]. Biomed Mater Eng,2014,24(1):501-509.
    [34] HU L,ZHANG J,LI C S,et al. A femur fracture reduction method based on anatomy of the contralateral side[J]. Comput Biol Med,2013,43(7):840-846.
    [35]于凌涛. 6-PTRT型并联机器人关键技术及其在正骨手术中的应用[D].哈尔滨:哈尔滨工业大学,2007.
    [36] FUCHTMEIER B,EGERSDOERFER S,MAI R,et al. Reduction of femoral shaft fractures in vitro by a new developed reduction robot system‘RepoRobo’[J]. Injury,2004,35(Suppl1):113-119.
    [37] GOSLING D T,WESTPHAL R,HUFNER T,et al. Robotassisted fracture reduction:a preliminary study in the femur shaft[J]. Med Biol Eng Comput,2005,43(1):115-120.
    [38] OSZWALD M,WESTPHAL R,BREDOW J,et al. 3D visualized robot assisted reduction of femoral shaft fractures:evaluation in exposed cadaveric bones[J]. Technol Health Care,2009,17(4):337-343.
    [39] MAEDA Y,SUGANO N,SAITO M,et al. Robot-assisted femoral fracture reduction:preliminary study in patients and healthy volunteers[J]. Comput Aided Surg,2008,13(3):148.
    [40]王军强,苏永刚,胡磊,等.医用机器人及计算机辅助导航手术系统在胫骨髓内钉手术中的设计与应用[J].中华创伤骨科杂志,2005(12):1 108-1 113.
    [41]韩巍,王军强,林鸿,等.主从式长骨骨折复位机器人的实验研究[J].北京生物医学工程,2015(1):12-17.
    [42] WANG J,HAN W,LIN H. Femoral fracture reduction with a parallel manipulator robot on a traction table[J]. Int J Med Robot,2013,9(4):464-471.
    [43]史刚,朱世磊,张自启,等.股骨干骨折复位机器人主从控制系统的设计[J].中国医疗设备,2018,33(7):17-19.
    [44]王满宜,王军强.计算机辅助导航骨科手术及医用机器人技术在创伤骨科的应用[J].中华创伤骨科杂志,2005(11):8-13.
    [45] SCHEP N W,BROEDERS I A,VAN DER WERKEN C. Computer assisted orthopaedic and trauma surgery. State of the art and future perspectives[J]. Injury,2003,34(4):299-306.
    [46] GRIMWOOD D,HARVEYLLOYD J. Reducing intraoperative duration and ionising radiation exposure during the insertion of distal locking screws of intramedullary nails:a smallscale study comparing the current fluoroscopic method against radiation-free,electromagnetic navigation[J]. Eur J Orthop Surg Traumatol,2016,26(8):1-10.
    [47] MORESCHINI O,PETRUCCI V,CANNATA R. Insertion of distal locking screws of tibial intramedullary nails:a comparison between the free-hand technique and the SURESHOTTM Distal Targeting System[J]. Injury,2014,45(2):405-407.
    [48] SOMERSON J S,ROWLEY D,KENNEDY C,et al. Electromagnetic navigation reduces surgical time and radiation exposure for proximal interlocking in retrograde femoral nailing[J].J Orthop Trauma,2014,28(7):417-421.
    [49]裴国献,相大勇.计算机辅助骨科技术的现状与未来[J].中华创伤骨科杂志,2003(2):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700