内蒙古塔木素地区断层活动性研究:来自断层泥及围岩主量元素及碳氧同位素的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Activity of the Faults in Tamusu, Inner Mongolia: Evidence from Major Elements and Carbon-Oxygen Isotopes of Fault Gouges and Wall Rocks
  • 作者:倪凤娟 ; 郭福生 ; 黎广荣 ; 郭超 ; 刘晓东 ; 刘平辉 ; 刘帅 ; 王超
  • 英文作者:Ni Fengjuan;Guo Fusheng;Li Guangrong;Guo Chao;Liu Xiaodong;Liu Pinghui;Liu Shuai;Wang Chao;State Key Laboratory of Nuclear Resources and Environment,East China University of Technology;School of Earth Sciences,East China University of Technology;Jiujiang College;
  • 关键词:塔木素 ; 高放废物处置 ; 断层活动性 ; 碳、氧同位素 ; 流体
  • 英文关键词:Tamusu;;high radioactive waste disposal;;fault activity;;carbon and oxygen isotopes;;fluid
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:东华理工大学核资源与环境国家重点实验室;东华理工大学地球科学学院;九江学院;
  • 出版日期:2019-07-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.187
  • 基金:国家国防科技工业局调查研究项目(科工二司[2014]1587号);; 江西省数字国土重点实验室开放基金项目(DLLJ201714)
  • 语种:中文;
  • 页:DZKQ201904017
  • 页数:9
  • CN:04
  • ISSN:42-1240/P
  • 分类号:172-180
摘要
高放射性废物处置关系到人类生产生活的安全。内蒙古塔木素地区作为高放废物"深地质处置"有利预选区之一,其断裂构造稳定性显得尤为重要。活动断层是深源流体上升到地表的重要通道。在分析塔木素地区3条断层的区域地质条件基础上,对该断层的断层泥和围岩进行了采样,以及主量元素,碳、氧同位素分析。结果表明:①3条断层采样露头位置分别位于不同时代的地层中,元素活动性分析表明Ca、Na等元素的活动性较强。值得注意的是,切割巴音戈壁组陆相沉积地层的乌兰铁布科断层(F_4),其围岩的w(CaO)高达19%,指示CaO可能源自下伏的古生代海相地层;②3条断层的断层泥与围岩的δ~(13)C变化较小,且二者相近,指示流体主要来源于围岩,断层与深部的连通性较差,即断层处于相对封闭的状态,深部流体对断层泥的形成仅造成较小的影响。断层泥显示出比围岩更低的δ~(18)O,指示大气水在断层流体中起一定的作用。综合来看,3条断层与深部的连通性较差,处于较为稳定的状态。
        The disposal of high radioactive waste is related closely with the safety of our living. As one of the favorable pre-selected areas for the "deep geological disposal" of high radioactive waste, the geological stability of the Inner Mongolian Tamusu region is of particular importance.Active faults are important channels for deep fluid to rise to the surface. Based on the analysis of the regional geological conditions of three faults in Tamusu area, major elements and carbon-oxygen isotopes are studied on nine samples from the faults gouge and wall rocks of the faults. The results show that:(1) Three fault sampling outcrops are located in formations of different ages, and element activity analysis indicates that Ca and Na have strong activities. The Wulantiebuke fault(F_4) cutting the Bayingobi Formation is typical terrestrial sedimentary strata, and contains as much as 19% CaO in the wall rocks. It is indicated that CaO may have originated from the underlying Paleozoic marine strata.(2) The δ~(13)C of fault gouges and wall rocks are similar and this suggests the fluid is mainly derived from the wall rocks, and the faults are in a relatively closed state. The δ~(18)O of fault gouge is slightly lower than that of wall rocks, indicating that meteoric water plays a role in fault fluid. Comprehensively, the three faults are in a relatively stable state with poor connection with the deep part.
引文
[1] 王驹.世界高放废物地质处置发展透析[J].中国核工业,2015(12):36-39.
    [2] 王驹,凌辉,陈伟明.高放废物地质处置库安全特性研究[J].中国核电,2017,10(2):270-278.
    [3] 高玉峰,刘月妙,谢敬礼,等.高放废物处置库缓冲材料气体渗透特性研究[J].中国矿业,2018,27(5):158-163.
    [4] 袁广祥,张路青,曾庆利,等.高放废物地质处置阿拉善预选区塔木素地段目标深度岩体质量预测[J].工程地质学报,2018,26(6):1690-1700.
    [5] 郭超,黎广荣,王超,等.内蒙古塔木素地区断层铁化学种特征及其对断层活动性的指示[J].地质论评,2018,64(6):1365-1378.
    [6] 王长轩,刘晓东,刘平辉.高放废物地质处置库黏土岩场址研究现状[J].辐射防护,2008,5:310-316.
    [7] 郑华铃,傅冰骏,范显华,等.建议我国重点研究黏土岩处置库预选场址[J].辐射防护,2007,2:92-98.
    [8] 李金兰.泥岩渗流-应力-损伤耦合及渗透性自愈合研究[D].武汉:武汉大学,2014.
    [9] 刘晓东,刘平辉.巴音戈壁盆地塔木素地区黏土岩基本特征研究[C]//废物地下处置学术研讨会.2012.
    [10] Wintsch R P,Christoffersen R,Kronenberg A K.Fluid-rock reaction weakening of fault zones[J].Journal of Geophysical Research:Solid Earth,1995,100(B7):13021-13032.
    [11] 王焕,李海兵.断裂带中古地震滑动的岩石记录[J].地球学报,2019,40(1):135-156.
    [12] Wiseall A C,Cuss R J,Hough E,et al.The role of fault gouge properties on fault reactivation during hydraulic stimulation;an experimental study using analogue faults[J].Journal of Natural Gas Science and Engineering,2018,59:21-34.
    [13] Niwa M,Shimada K,Aoki K,et al.Microscopic features of quartz and clay particles from fault gouges and infilled fractures in granite:Discriminating between active and inactive faulting[J].Engineering Geology,2016,210:180-196.
    [14] Boles A,Mulch A,van der Pluijm B.Near-surface clay authigenesis in exhumed fault rock of the Alpine Fault Zone (New Zealand);O-H-Ar isotopic,XRD and chemical analysis of illite and chlorite[J].Journal of Structural Geology,2018,111:27-41.
    [15] Yuan W,Yang Z.The Alashan Terrane did not amalgamate with North China block by the Late Permian:Evidence from Carboniferous and Permian paleomagnetic results[J].Journal of Asian Earth Sciences,2015,104:145-159.
    [16] 张代生,李光云,罗肇,等.银根-额济纳旗盆地油气地质条件[J].新疆石油地质,2003,24(2):130-133.
    [17] 王廷印,吴茂炳.阿拉善地区华北板块北部陆缘区成矿作用的研究[J].兰州大学学报:自然科学版,1993,29(4):252-256.
    [18] 陈启林,卫平生,杨占龙.银根-额济纳盆地构造演化与油气勘探方向[J].石油实验地质,2006,28(4):311-315.
    [19] 段庆宝,杨晓松,陈建业.地震断层带流体作用的岩石物理和地球化学响应研究综述[J].地球物理学进展,2015,30(6):2448-2462.
    [20] Chen J,Yang X,Ma S,et al.Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan Earthquake fault:Geochemical evidence and implications for fault zone evolution and coseismic slip[J].Journal of Geophysical Research:Solid Earth,2013,118(2):474-496.
    [21] Chen W M D,Tanaka H,Huang H J,et al.Fluid infiltration associated with seismic faulting:Examining chemical and mineralogical compositions of fault rocks from the active Chelungpu fault[J].Tectonophysics,2007,443(3):243-254.
    [22] Goddard J V,Evans J P.Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets,northwestern Wyoming,U.S.A[J].Journal of Structural Geology,1995,17(4):533-547.
    [23] Tanaka H,Fujimoto K,Ohtani T,et al.Structural and chemical characterization of shear zones in the freshly activated Nojima fault,Awaji Island,southwest Japan[J].Journal of Geophysical Research:Solid Earth,2001,106(B5):8789-8810.
    [24] Sibson R H.Implications of fault-valve behaviour for rupture nucleation and recurrence[J].Tectonophysics,1992,211(1):283-293.
    [25] Sinisi R,Petrullo A V,Agosta F,et al.Contrasting fault fluids along high-angle faults:a case study from Southern Apennines (Italy)[J].Tectonophysics,2016,690:206-218.
    [26] Sibson R H.Seismic pumping:A hydrothermal fluid transport mechanism[J].Journal of the Geological Society,1975,131(6):653-659.
    [27] 孟令东,付晓飞,吕延防,碎屑岩层系中张性正断层封闭性影响因素的定量分析[J].地质科技情报,2013,32(2):15-28.
    [28] Kerrich R,Tour T E L,Willmore L.Fluid participation in deep fault zones:Evidence from geological,geochemical,and 18O/16O relations[J].Journal of Geophysical Research Solid Earth,1984,89(B6):4331-4343.
    [29] Zheng Y,Mao J,Chen Y,et al.Hydrothermal ore deposits in collisional orogens[J].Science Bulletin,2019,64(3):205-212.
    [30] Kennedy B M,Kharaka Y K,Evans W C,et al.Mantle fluids in the San Andreas Fault System,California[J].Science,1997,278:1278-1281.
    [31] 赵军,郑国东,付碧宏.活动断层的构造地球化学研究现状[J].地球科学进展,2009,24(10):1130-1137.
    [32] é.Pili,Kennedy B M,Conrad M E,et al.Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault system[J].Chemical Geology,2011,281(3):242-252.
    [33] éric Pili,Poitrasson F,Gratier J P.Carbon-oxygen isotope and trace element constraints on how fluids percolate faulted limestones from the San Andreas Fault system:partitioning of fluid sources and pathways[J].Chemical Geology,2002,190(1/4):231-250.
    [34] Byerlee J.Model for episodic flow of high-pressure water in fault zones before earthquakes[J].Geology,1993,21(4):303-306.
    [35] Taylor B M.Magmatic volatiles:Isotope variation of C,H,S[C]//Anon.Stable isotopes in high temperature geological progress.Reviews in Mineralogy,1986,16:185-226.
    [36] Veizer J,Holser W T,Wilgus C K.Correlation of 13C/12C and 34S/32S secular variation[J].Geochimica et Cosmochimica Acta,1980,44:579-588.
    [37] Kirschner D L,Kennedy L A.Limited syntectonic fluid flow in carbonate-hosted thrust faults of the Front Ranges,Canadian Rockies,inferred from stable isotope data and structures[J].Journal of Geophysical Research Solid Earth,2001,106(B5):8827-8840.
    [38] Ohmoto H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology,1972,67:551-578.
    [39] Wang P L,Wu J J,Yeh E C,et al.Isotopic constraints of vein carbonates on fluid sources and processes associated with the ongoing brittle deformation within the accretionary wedge of Taiwan[J].Terra Nova,2010,22(4):251-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700