土工织物散体桩桩体单轴压缩试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Uniaxial Compression Test of Geosynthetic-encased Stone Columns
  • 作者:陈建峰 ; 曾岳 ; 冯守中 ; 李丽华
  • 英文作者:CHEN Jian-feng;ZENG Yue;FENG Shou-zhong;LI Li-hua;School of Civil Engineering,Tongji University;Wuhan Guangyi Transportation Science and Technology Co.,Ltd;Changzhou Telystar New Material Co.Ltd;
  • 关键词:道路工程 ; 土工织物散体桩 ; 单轴压缩试验 ; 聚丙烯土工编织布 ; 桩体强度 ; 桩体模量
  • 英文关键词:road engineering;;geosynthetic-encased stone column;;uniaxial compression test;;polypropylene woven geotextiles;;strength of column body;;modulus of column body
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:同济大学土木工程学院;武汉广益交通科技股份有限公司;常州泰勒思达新材料有限公司;
  • 出版日期:2018-06-15
  • 出版单位:中国公路学报
  • 年:2018
  • 期:v.31;No.178
  • 基金:国家自然科学基金项目(41572266,41772289);; 上海市浦江人才计划项目(14PJD032)
  • 语种:中文;
  • 页:ZGGL201806005
  • 页数:7
  • CN:06
  • ISSN:61-1313/U
  • 分类号:185-191
摘要
土工织物散体桩是一种新型的复合地基桩基,为了研究其在轴向荷载下的强度和变形特性,并探讨桩体强度和模量的确定方法,选用了3种相对密度(Dr=0.42,0.62,0.78)的碎石和4种筋材强度(T=33,43,52,65kN·m-1)的无接缝聚丙烯土工编织布套筒,制备成12组直径为300mm,高度为600mm的大尺寸土工织物散体桩桩体试样,对试样进行单轴压缩试验至破坏。研究结果表明:单轴压缩下土工织物散体桩桩体应力-应变曲线在加载初期因碎石受到初始压密而上凹,而后近似线性增长至桩体强度,随后应力随应变减小呈现应变软化特性;当加载接近至桩体强度时,编织布套筒中间部位明显鼓胀,该处横向筋丝逐根断裂直至桩体失效,故横向筋丝的强度对桩体的强度起控制作用,在实际应用中可加强横向筋丝的强度以进一步提高桩体的竖向承载力;土工织物散体桩桩体强度与碎石相对密度无相关关系,而与筋材强度呈较好的线性统计关系,可以通过筋材强度确定土工织物散体桩的桩体强度;土工织物散体桩桩体模量随筋材强度或碎石密实度的增大而明显增大,在同一碎石密实度下,桩体模量随筋材强度呈线性增长关系;建立了土工织物散体桩桩体模量理论计算公式,并采用试验值对理论公式进行修正,修正系数κ=2.4,修正后的结果与试验值吻合很好。
        Geosynthetic-encased stone columns(GESCs)are a new type of column bodies for a composite foundation.In this work,12 large-scale samples of GESCs with 300 mm diameter and600 mm height were made using gravels of three different relative densities(Dr=0.42,0.62,0.78),and seamless sleeves of four different strengths(T=33,43,52,65 kN·m-1)were also made using polypropylene woven geotextiles.These samples were used for studying the strength and deformation characteristics of GESCs subjected to a uniaxial loading,and subsequently to establish a method to determine their strength and modulus.Uniaxial compression tests were performed on the samples until failure.The results show upward concave stress-strain curve of GESCs at the preliminary loading stage presumably due to the initial densification of gravelsunder the uniaxial compression.After the initial nonlinear stage,stress increases approximately linearly up to the strength of GESCs,and subsequently decreases,indicating strain-softening characteristics.Once the loading approaches the strength of GESCs,the GESC bodies apparently bulge in the middle,where the horizontal slices of the geotextiles break sequentially until failure of the GESCs.Therefore,the strength of the horizontal slices ultimately controls the strength of GESCs.The bearing capacity of GESCs can thus be enhanced in practice by strengthening the horizontal slices.The strength of the GESCs is independent of the relative density of gravels but varies somewhat linearly with the geotextile strength.The strength of the GESCs can,therefore,be determined from that of the geotextile.The modulus of the GESCs apparently increases with an increase of either the geotextile strength or the gravel density,however,for a fixed gravel density the modulus increases linearly with the geotextile strength.A theoretical formula was established to compute the modulus of the GESCs.The formula was verified with the test data,and a correction factor ofκ=2.4 was obtained to arrive at a better agreement with the test results.
引文
[1]陈建峰,王波,魏静,等.加筋碎石桩复合地基路堤模型试验研究[J].中国公路学报,2015,28(9):1-8.CHEN Jian-feng,WANG Bo,WEI Jing,et al.Model Tests of Embankments on Soft Foundation Reinforced with Geosynthetic-encased Stone Columns[J].China Journal of Highway and Transport,2015,28(9):1-8.
    [2]DEBNATH P,DEY A K.Bearing Capacity of Geogrid Reinforced Sand over Encased Stone Columns in Soft Clay[J].Geotextiles and Geomembranes,2017,45(6):653-664.
    [3]RAITHEL M,KUSTER V,LINDMARK A.Geotextile Encased Columns a Foundation System for Earth Structures,Illustrated by a Dyke Project for a Works Extension in Hamburg[C]//GARIN H.Nordic Geotechnical Meeting.Link9ping:Swedish Geotechnical Society,2004:1-10.
    [4]RAITHEL M,KIRCHNER A,SCHADE C,et al.Foundation of Constructions on Very Soft Soils with Geotextile Encased Columns—State of the Art[C]//SCHAEFER V R,BRUCE D A,BYLE M J.Proceedings of GeoFrontiers.Reston:American Society of Civil Engineers,2005:1-11.
    [5]LEE D Y,YOO C,PARK S,et al.Field Load Tests of Geogrid Encased Stone Columns in Soft Ground[C]//ISOPE.Proceedings of the Eighteenth International Offshore and Polar Engineering Conference.Sacramento:International Society of Offshore and Polar Engineers,2008:521-524.
    [6]GNIEL J,BOUAZZA A.Improvement of Soft Soils Using Geogrid Encased Stone Columns[J].Geotextiles and Geomembranes,2009,27(3):167-175.
    [7]ARAUJO G L S,PALMEIRA E M,CUNHA R P.Behaviour of Geosynthetic-encased Granular Columns in Porous Collapsible Soil[J].Geosynthetics International,2009,16(6):433-451.
    [8]YOO C.Settlement Behavior of Embankment on Geosynthetic-encased Stone Column Installed Soft Ground—A Numerical Investigation[J].Geotextiles and Geomembranes,2015,43(6):484-492.
    [9]CHEN J F,LI L Y,XUE J F,et al.Failure Mechanism of Geosynthetic-encased Stone Columns in Soft Soils Under Embankment[J].Geotextiles and Geomembranes,2015,43(5):424-431.
    [10]RAJAGOPAL K,KRISHNASWAMY N R,LATHA G M.Behaviour of Sand Confined with Single and Multiple Geocells[J].Geotextiles and Geomembranes,1999,17(3):171-184.
    [11]WU C S,HONG Y S.A Simplified Approach for Evaluating the Bearing Performance of Encased Granular Columns[J].Geotextiles and Geomembranes,2014,42(4):339-347.
    [12]GNIEL J,BOUAZZA A.Construction of Geogrid Encased Stone Columns:A New Proposal Based on Laboratory Testing[J].Geotextiles and Geomembranes,2010,28(1):108-118.
    [13]MIRANDA M,COSTA A D.Laboratory Analysis of Encased Stone Columns[J].Geotextiles and Geomembranes,2016,44(3):269-277.
    [14]秦红玉,刘汉龙,高玉峰,等.粗粒料强度和变形的大型三轴试验研究[J].岩土力学,2004,25(10):1575-1580.QIN Hong-yu,LIU Han-long,GAO Yu-feng,et al.Research on Strength and Deformation Behavior of Coarse Aggregates Based on Large-scale Triaxial Tests[J].Rock and Soil Mechanics,2004,25(10):1575-1580.
    [15]石熊,张家生,孟飞,等.加筋粗粒土大型三轴试验研究[J].四川大学学报:工程科学版,2014,46(2):52-58.SHI Xiong,ZHANG Jia-sheng,MENG Fei,et al.Large-scale Triaxial Test of Reinforced Coarsegrained Soils[J].Journal of Sichuan University:Engineering Science,2014,46(2):52-58.
    [16]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.GUO Qing-guo.Engineering Properties and Application of Coarse-grained Soil[M].Zhengzhou:The Yellow River Water Conservancy Press,1998.
    [17]杨艳燕,黄婧.应用不同缝纫方法的土工织物接缝强度比较研究[J].科技创业月刊,2007,20(6):176-177.YANG Yan-yan,HUANG Jing.Comparison of the Strength Applied Different Seaming Methods in Geotextile[J].Pioneering with Science&Technology Monthly,2007,20(6):176-177.
    [18]阮龙飞,王永庆.中远船务启东海工基地坞口围堰工程的设计与施工[J].水利水电科技进展,2009,29(6):90-94.RUAN Long-fei,WANG Yong-qing.Design and Construction of Dock-gate Cofferdam of Cosco Qidong Marine Base[J].Advances in Science and Technology of Water Resources,2009,29(6):90-94.
    [19]陈建峰,韩杰.夯扩碎石桩单桩载荷试验数值模拟[J].岩土工程学报,2009,31(9):1366-1370.CHEN Jian-feng,HAN Jie.Numerical Modeling of Loading Tests on a Rammed Aggregate Pier[J].Chinese Journal of Geotechnical Engineering,2009,31(9):1366-1370.
    [20]陈建峰,韩杰.夯扩碎石桩群桩承载性状研究[J].中国公路学报,2010,23(1):26-31.CHEN Jian-feng,HAN Jie.Research on Bearing Behavior of Rammed Aggregate Pier Group[J].China Journal of Highway and Transport,2010,23(1):26-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700