复合防护液舱抗爆效能对比试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative Experimental Study of Anti-explosion Performance of Compound Protective Liquid Cabin
  • 作者:孔祥韶 ; 王旭阳 ; 徐敬博 ; 郑成 ; 徐双喜 ; 袁天 ; 吴卫国
  • 英文作者:KONG Xiang-shao;WANG Xu-yang;XU Jing-bo;ZHENG Cheng;XU Shuang-xi;YUAN Tian;WU Wei-guo;Key Laboratory of High Performance Ship Technology of Ministry of Education,Wuhan University of Technology;School of Transportation,Wuhan University of Technology;
  • 关键词:复合防护液舱 ; 冲击波 ; 高速破片 ; 防御效果 ; 抗爆性能 ; 对比试验
  • 英文关键词:composite protective liquid cabin;;blast wave;;high speed fragment;;protective effect;;antiexplosion performance;;comparative experiment
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:武汉理工大学高性能舰船技术教育部重点实验室;武汉理工大学交通学院;
  • 出版日期:2018-12-15
  • 出版单位:兵工学报
  • 年:2018
  • 期:v.39;No.261
  • 基金:装备预先研究教育部联合基金青年人才项目(6141A02033108);; 国家自然科学基金青年基金项目(51509196)
  • 语种:中文;
  • 页:BIGO201812018
  • 页数:12
  • CN:12
  • ISSN:11-2176/TJ
  • 分类号:152-163
摘要
液舱是舰船多层防护结构体系中的重要功能舱室,战斗部近距离爆炸时,高速破片和冲击波载荷将对防护液舱产生严重的毁伤效应。针对高速破片和冲击波作用下防护液舱的动态响应特性和毁伤模式,提出了复合防护液舱的结构形式。为了对比该液舱相对常规液舱的抗爆效能,开展了战斗部模型近距离爆炸载荷作用下复合液舱和常规结构形式液舱毁伤的模型试验,得到了战斗部模型破片速度、液舱结构的变形、应变、破口尺寸、舱壁压力等参量。通过对比发现,相对于传统液舱结构,复合防护液舱前面板、后面板最大变形分别减少22. 78%和8. 47%,结构应变降低30%,冲击波峰值减弱18. 62%,该新型结构形式明显提高了液舱抗爆防御效果。
        The liquid cabin with multi-layer protective structure plays an important role in defending the loadings of combined high-speed fragments and blast wave,which are usually due to the close-in explosion of a cast charge,and cause severe damage to the structure of liquid cabin. A new composite structure of liquid cabin is designed based on the dynamic response characteristics and failure mode of liquid cabin under the synergistic effect of high-speed fragments and blast wave. In order to investigate the antiblast performance of composite liquid cabin,the traditional liquid cabin and newly designed composite liquid cabin are experimentally test under the blast load of cased charge. The fragment velocity,bulkhead deformation,perforation size,strain and shock wave pressure are obtained. The experimental data are analyzed and compared. It is found that,in the composite liquid cabin,the maximum deformations of front and rear bulkheads are decreased by 22. 78% and 8. 47%,respectively,the plastic strain is decreased by 30%,and the shock wave peak is decreased by 18. 62%.
引文
[1] Chou P C,Schaller R,Hoburg J. Analytical study of the fracture of liquid-filled tanks impacted by hypervelocity particles,DIT Report 160-9[R]. Philadelphia,PA,US:Drexel Institute of Technology,1967:2-10.
    [2] Lee M,Longoria R G,Wilson D E. Ballistic waves in high-speed water entry[J]. Journal of Fluids and Structures,1997,11(7):819-844.
    [3] Deletombe E,Fabis J,Dupas J,et al. Experimental analysis of7. 62 mm hydrodynamic ram in containers[J]. Journal of Fluids and Structures,2013,37(2):1-21.
    [4] Varas D,López-Puente J,Zaera R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J].International Journal of Impact Engineering,2009,36(1):81-91.
    [5] Varas D,Zaera R,López-Puente J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J].Aerospace Science and Technology,2012,16(1):19-28.
    [6] Townsend D,Park N,Devall P M. Failure of fluid filled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering,2003,29(1/2/3/4/5/6/7/8/9/10):723-733.
    [7] Liu F,Kong X S,Zheng C,et al. The influence of rubber layer on the response of fluid-filled container due to high-velocity impact[J]. Composite Structures,2018,183:671-681.
    [8] Sarlin E,Apostol M,Lindroos M,et al. Impact properties of novel corrosion resistant hybrid structures[J]. Composite Structures,2014,108:886-893.
    [9] Tasdemircl A,Tunusoglu G,Güden M. The effect of the interlayer on the ballistic performance of ceramic/composite armors:experimental and numerical study[J]. International Journal of Impact Engineering,2012,44(3):1-9.
    [10]范志强. PVDF压力测量特性与水下爆炸近场多孔金属夹芯板动力响应的研究[D].合肥:中国科学技术大学,2015.FAN Zhi-qiang. Characteristics of pressure measurements using PVDF gauge and the dynamic response of metallic sandwich panels subjected to proximity underwater explosion[D]. Hefei:University of Science and Technology of China,2015.(in Chinese)
    [11] Lloyd R M. Conventional warhead systems physics and engineering design[M]. Reston,VA,US:AIAA,1998:20-35.
    [12]王鹏飞.偏心起爆战斗部相关技术研究[D].北京:北京理工大学,2015.WANG Peng-fei. Research on the eccentric initiation warhead[D]. Beijing:Beijing Institute of Technology,2015.(in Chinese)
    [13] Danel J F,Kazandjian L. A few remarks about the gurney energy of condensed explosives[J]. Propellants,Explosives,Pyrotechnics,2004,29(5):314-326.
    [14]周保顺,张立恒,王少龙,等. TNT炸药爆炸冲击波的数值模拟与实验研究[J].弹箭与制导学报,2010,30(3):88-90.ZHOU Bao-shun,ZHANG Li-heng,WANG Shao-long,et al.Numerical simulation and experimental research on TNT explosion shock wave[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2010,30(3):88-90.(in Chinese)
    [15] Hutchinson M D. The escape of blast from fragmenting munitions casings[J]. International Journal of Impact Engineering,2009,36(2):185-192.
    [16]沈慧铭,李伟兵,王晓鸣,等.圆柱壳体装药偏心多点起爆下破片速度的分布[J].爆炸与冲击,2017,37(6):1039-1045.SHEN Hui-ming,LI Wei-bing,WANG Xiao-ming,et al. Velocity distribution of fragments resulted by explosion of a cylindrical shell charge on multi-spots eccentric initiation[J]. Explosion and Shock Waves,2017,37(6):1039-1045.(in Chinese)
    [17]仲强,侯海量,朱锡,等.陶瓷/液舱复合结构抗侵彻数值分析[J].爆炸与冲击,2017,37(3):510-519.ZHONG Qiang, HOU Hai-liang, ZHU Xi,et al. Numerical analysis of penetration resistance of ceramic/fluid composite structure[J]. Explosion and Shock Waves,2017,37(3):510-519.(in Chinese)
    [18]孔祥韶.大型水面舰艇舷侧防护结构内爆的数值模拟研究[D].武汉:武汉理工大学,2009.KONG Xiang-shao. Research on response simulation of war-ship broadside protective structure under inner explosion[D]. Wuhan:Wuhan University of Technology,2009.(in Chinese)
    [19]张钟文.橡胶填充异型夹层结构抗射流侵彻研究[D].南京:南京理工大学,2013.ZHANG Zhong-wen. Study on the effects of composite armor with corrugated sandwich against the shaped charge jet penetration[D]. Nanjing:Nanjing University of Science and Technology,2013.(in Chinese)
    [20]唐廷,朱锡,侯海量,等.大型水面舰艇防雷舱结构防护机理数值仿真[J].哈尔滨工程大学学报,2012,33(2):142-149.TANG Ting,ZHU Xi,HOU Hai-liang,et al. Numerical simulation study on the defense mechanism of a cabin near the shipboard for large surface vessels[J]. Journal of Harbin Engineering University,2012,33(2):142-149.(in Chinese)
    [21]李营.液舱防爆炸破片侵彻作用机理研究[D].武汉:武汉理工大学,2014.LI Ying. Fragment resistant mechanism research of safety liquid cabin[D]. Wuhan:Wuhan University of Technology,2014.(in Chinese)
    [22]朱锡,冯刚,张振华.爆炸载荷作用下固支方板的应变场及破坏分析[J].船舶力学,2005,9(2):83-89.ZHU Xi, FENG Gang, ZHANG Zhen-hua. Strain field and damage analysis of clamped sguare plates subjected to explosive loading[J]. JournaI of Ship Mechanics,2005,9(2):83-89.(in Chinese)
    [23]陈闯,王晓鸣,李文彬,等.多层介质阻抗匹配对隔爆效果的影响[J].振动与冲击,2014,33(17):105-110.CHEN Chuang,WANG Xiao-ming,LI Wen-bin,et al. Influence of multilayered media impedance matching on explosion interruption effect[J]. Jouranal of Vibration and Shock,2014,33(17):105-110.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700