大气等离子喷涂环境障涂层镀Al表面改性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Al-Modified Environmental Barrier Coating Prepared by Atmospheric Plasma Spray
  • 作者:张小锋 ; 周克崧 ; 刘敏 ; 李洪 ; 阳海棠 ; 牛少鹏 ; 邓春明 ; 邓畅光
  • 英文作者:ZHANG Xiaofeng;ZHOU Kesong;LIU Min;LI Hong;YANG Haitang;NIU Shaopeng;DENG Chunming;DENG Changguang;National Engineering Laboratory for Modern Materials Surface Engineering Technology & The Key Laboratory of Guangdong for Modern Surface Engineering Technology,Guangdong Institute of New Materials;School Aeronautics and Astronautics,Central South University;
  • 关键词:环境障涂层 ; 大气等离子喷涂 ; 镀Al改性 ; 水氧腐蚀 ; CMAS腐蚀 ; 热循环
  • 英文关键词:EBCs;;atmospheric plasma spray;;Al-modification;;water-oxygen corrosion;;CMAS corrosion;;thermal cycle
  • 中文刊名:XJKB
  • 英文刊名:Materials China
  • 机构:广东省新材料研究所现代材料表面工程技术国家工程实验室及广东省现代表面工程技术重点实验室;中南大学航空航天学院;
  • 出版日期:2019-01-28 11:48
  • 出版单位:中国材料进展
  • 年:2018
  • 期:v.37;No.444
  • 基金:国家重点研究发展计划项目(2017YFB0306100);; 广东省科学院项目(2018GDASCX-0402,2017GDASCX-0202,2017GDASCX-0111);; 广东省科技项目(2017B090916002,2017A070701027);; 广东省自然科学基金项目(2016A030312015,2017A030310315);; 广州科技项目(201605131008557,201707010385)
  • 语种:中文;
  • 页:XJKB201812005
  • 页数:8
  • CN:12
  • ISSN:61-1473/TG
  • 分类号:42-48+57
摘要
陶瓷基复合材料(CMC)由于具有较低的密度(高温合金的1/3~1/4)、较高的服役温度(比高温合金高200~240℃)以及良好的结构强度(高温合金的2倍),已成为未来大推重比航空发动机热端部件的首选材料。发动机服役过程中,热端部件完全暴露于空气气氛中,服役环境恶劣,以Si C/Si C为代表的CMC部件直接面临着腐蚀、烧蚀、冲刷等问题,因此急需开展一类高性能CMC热防护涂层即环境障涂层(EBCs)的研究。通过大气等离子喷涂在SiC/SiC CMC基体表面制备硅/莫来石/硅酸镱(Yb2SiO5)三层结构EBCs。为提高EBCs服役性能,对涂层样品进行镀Al表面改性即采用磁控溅射技术在涂层表面镀Al全包覆,然后对其进行真空热处理。在高温低真空下,涂层表面Al膜发生熔融并在毛细管力的作用下往多孔涂层内部渗透并与Yb_2SiO_5发生原位反应,在涂层表面形成一层致密α-Al_2O_3层。对喷涂态及镀Al表面改性涂层进行典型模拟服役环境性能对比实验,发现镀Al表面改性EBCs具有较好的抗高温水氧及耐CMAS(CaO-MgO-Al_2O_3-Si O_2)腐蚀性能。另外,通过实验观察,原位形成的α-Al_2O_3致密层对涂层的热循环性能无明显影响。
        The ceramic matrix composite( CMC) material with low density( 1/3~ 1/4 of superalloy),high operation temperature( 200 ~ 240 ℃ >superalloy) and good mechanical strength( twice as high as superalloy),has become a preferred material in future for high thrust-weight ratio aero-engine. During the service operation of the engine,the hot end components are completely exposed to the air atmosphere,and the service environment is harsh. The CMC parts represented by Si C/Si Care directly faced with serious operation conditions such as corrosion,ablation, erosion, etc. Therefore, it is urgent to develop a high performance protective coating for CMC component( i. e.,environment barrier coatings,EBCs). In this paper,three-layer-structured EBCs( Si/mullite/Yb_2 Si O_5) were prepared by atmospheric plasma spraying on the surface of Si C/Si C CMC substrate. In order to improve the service performance of EBCs,the Al-plated surface of the coating samples was modified by magnetron sputtering on the surface of the coating,and then vacuum heat treated. Under high temperature and low vacuum,the Al film on the surface of the coating melts and penetrates into the porous coating under the action of capillary force and reacts in situ with Yb_2 Si O_5 to form a dense layer of α-Al_2 O_3 on the surface of the coating. The typical simulated service environment performance comparison experiments of assprayed and Al-modified coatings show that the Al-modified EBCs have good resistance to high temperature water-oxygen and CMAS corrosion resistance. Besides,Al-modification for EBCs did not significantly affect the thermal cycle performance compared with the as-sprayed EBCs.
引文
[1]Liu Daxiang(刘大响),Cheng Ronghui(程荣辉).Journal of Beijing University of Aeronautics and Astronautics(北京航空航天大学学报)[J],2002,28(5):490496.
    [2]Jiao Chunrong(焦春荣),Wang Ling(王岭),Yang Jinhua(杨金华),et al.Materials China(中国材料进展)[J],2016,35(6):466-471.
    [3]Huang Guanghong(黄光宏),Wang Ning(王宁),He Liming(何利民).Failure Analysis and Prevention(失效分析与预防)[J],2007,2(1):59-64.
    [4]Zhu D M,Ahlborg N.Surface and Coatings Technology[J],2013,237:79-87.
    [5]Jang B,Feng F,Suzuta K,et al.Ceramics International[J],2017,43:1880-1886.
    [6]Lee K,Miller R,Jacobson N.Journal of the American Ceramic Society[J],1995,78:705-710.
    [7]Lee K.Surface and Coatings Technology[J],2000,133:1-7.
    [8]Jiang F,Cheng L,Wang Y.Ceramics International[J],2017,43:9019-9023.
    [9]Fan Jinjuan(范金娟),Chang Zhendong(常振东),Tao Chunhu(陶春虎),et al.Journal of Materials Engineering(材料工程)[J],2014,10:90-95.
    [10]He Shimei(贺世美),Mo Rende(牟仁德),Lu Feng(陆峰),et al.Failure Analysis and Prevention(失效分析与预防)[J],2011,6(1):44-49.
    [11]Lu Minghui(路明辉),Feng Zhihai(冯志海),Zhou Yanchun(周延春).Journal of Ceramics(陶瓷学报)[J],2015,36(2):107-118.
    [12]Bradley T,Stephen S,Foucault F,et al.Acta Materialia[J],2016,103:448-460.
    [13]Chen G,Lee K,Tewari S.Journal of Ceramic Processing Research[J],2007,8:142-144.
    [14]Lu Y,Ganguli R,Drewien C,et al.Nature[J],1997,389:364-368.
    [15]Colombo P,Mera G,Riedel R,et al.Journal of the American Ceramic Society[J],2010,93:1805-1837.
    [16]Zhang Xiaofeng(张小锋),Zhou Kesong(周克崧),Liu Min(刘敏),et al.Journal of Inorganic Materials(无机材料学报)[J],2018,33(3):325-330.
    [17]Zhang X F,Zhou K S,Xiao X L,et al.Materials Science Forum[J],2015,816:219-225.
    [18]Zhang X F,Zhou K S,Xu W.Ceramics International[J],2014,40:12703-12708.
    [19]Zhang X F,Zhou K S,Liu M.Ceramics International[J],2018,https://doi.org/10.1016/j.ceramint.2018.06.019
    [20]Richard B,Sehr S,Franqueville F.Acta Materialia[J],2016,103:448-460.
    [21]Zhang Xiaofeng(张小锋),Zhou Kesong(周克崧),Song Jinbing(宋进兵),et al.Journal of the Chinese Ceramic Society(硅酸盐学报)[J],2015,43(1):21-27.
    [22]Zhang X F,Zhou K S,Liu M,et al.Ceramics International[J],2016,42:13969-13975.
    [23]Cojocaru C,Levesque C,Moreau C,et al.Surface and Coatings Technology[J],2013,216:215-223.
    [24]Zhong X,Niu Y,Li H,et al.Surface and Coatings Technology[J],2018,349:636-646.
    [25]Stolzenburg F,Kenesei P,Almer J,et al.Acta Materialia[J],2016,105:189-198.
    [26]Stolzenburg F,Johnson M,Lee K,et al.Surface and Coatings Technology[J],2015,284:44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700